scholarly journals Testing Host-Plant Driven Speciation in Phytophagous Insects: A Phylogenetic Perspective

Author(s):  
Emmanuelle Jousselin ◽  
Marianne Elias

During the last two decades, ecological speciation has been a major research theme in evolutionary biology. Ecological speciation occurs when reproductive isolation between populations evolves as a result of niche differentiation. Phytophagous insects represent model systems for the study of this evolutionary process. The host-plants on which these insects feed and often spend parts of their life cycle constitute ideal agents of divergent selection for these organisms. Adaptation to feeding on different host-plant species can potentially lead to ecological specialization of populations and subsequent speciation. This process is thought to have given birth to the astonishing diversity of phytophagous insects and is often put forward in macroevolutionary scenarios of insect diversification. Consequently, numerous phylogenetic studies on phytophagous insects have aimed at testing whether speciation driven by host-plant adaptation is the main pathway for the diversification of the groups under investigation. The increasing availability of comprehensive and well-resolved phylogenies and the recent developments in phylogenetic comparative methods are offering an unprecedented opportunity to test hypotheses on insect diversification at a macroevolutionary scale, in a robust phylogenetic framework. Our purpose here is to review the contribution of phylogenetic analyses to investigate the importance of plant-mediated speciation in the diversification of phytophagous insects and to present suggestions for future developments in this field.

Author(s):  
Emmanuelle Jousselin ◽  
Marianne Elias

During the last two decades, ecological speciation has been a major research theme in evolutionary biology. Ecological speciation occurs when reproductive isolation between populations evolves as a result of niche differentiation. Phytophagous insects represent model systems for the study of this evolutionary process. The host-plants on which these insects feed and often spend parts of their life cycle constitute ideal agents of divergent selection for these organisms. Adaptation to feeding on different host-plant species can potentially lead to ecological specialization of populations and subsequent speciation. This process is thought to have given birth to the astonishing diversity of phytophagous insects and is often put forward in macroevolutionary scenarios of insect diversification. Consequently, numerous phylogenetic studies on phytophagous insects have aimed at testing whether speciation driven by host-plant adaptation is the main pathway for the diversification of the groups under investigation. The increasing availability of comprehensive and well-resolved phylogenies and the recent developments in phylogenetic comparative methods are offering an unprecedented opportunity to test hypotheses on insect diversification at a macroevolutionary scale, in a robust phylogenetic framework. Our purpose here is to review the contribution of phylogenetic analyses to investigate the importance of plant-mediated speciation in the diversification of phytophagous insects and to present suggestions for future developments in this field.


Author(s):  
Emmanuelle Jousselin ◽  
Marianne Elias

During the last two decades, ecological speciation has been a major research theme in evolutionary biology. Ecological speciation occurs when reproductive isolation between populations evolves as a result of niche differentiation. Phytophagous insects represent model systems for the study of this evolutionary process. The host-plants on which these insects feed and often spend parts of their life cycle constitute ideal agents of divergent selection for these organisms. Adaptation to feeding on different host-plant species can potentially lead to ecological specialization of populations and subsequent speciation. This process is thought to have given birth to the astonishing diversity of phytophagous insects and is often put forward in macroevolutionary scenarios of insect diversification. Consequently, numerous phylogenetic studies on phytophagous insects have aimed at testing whether speciation driven by host-plant adaptation is the main pathway for the diversification of the groups under investigation. The increasing availability of comprehensive and well-resolved phylogenies and the recent developments in phylogenetic comparative methods are offering an unprecedented opportunity to test hypotheses on insect diversification at a macroevolutionary scale, in a robust phylogenetic framework. Our purpose here is to review the contribution of phylogenetic analyses to investigate the importance of plant-mediated speciation in the diversification of phytophagous insects and to present suggestions for future developments in this field.


Author(s):  
Emmanuelle Jousselin ◽  
Marianne Elias

During the last two decades, ecological speciation has been a major research theme in evolutionary biology. Ecological speciation occurs when reproductive isolation between populations evolves as a result of niche differentiation. Phytophagous insects represent model systems for the study of this evolutionary process. The host-plants on which these insects feed and often spend parts of their life cycle constitute ideal agents of divergent selection for these organisms. Adaptation to feeding on different host-plant species can potentially lead to ecological specialization of populations and subsequent speciation. This process is thought to have given birth to the astonishing diversity of phytophagous insects and is often put forward in macroevolutionary scenarios of insect diversification. Consequently, numerous phylogenetic studies on phytophagous insects have aimed at testing whether speciation driven by host-plant adaptation is the main pathway for the diversification of the groups under investigation. The increasing availability of comprehensive and well-resolved phylogenies and the recent developments in phylogenetic comparative methods are offering an unprecedented opportunity to test hypotheses on insect diversification at a macroevolutionary scale, in a robust phylogenetic framework. Our purpose here is to review the contribution of phylogenetic analyses to investigate the importance of plant-mediated speciation in the diversification of phytophagous insects and to present suggestions for future developments in this field.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Stephen B. Heard

Ecological speciation via host shifting has contributed to the astonishing diversity of phytophagous insects. The importance for host shifting of trait differences between alternative host plants is well established, but much less is known about trait variationwithinhosts. I outline a conceptual model, the “gape-and-pinch” (GAP) model, of insect response to host-plant trait variation during host shifting and host-associated differentiation. I offer four hypotheses about insect use of plant trait variation on two alternative hosts, for insects at different stages of host-associated differentiation. Collectively, these hypotheses suggest that insect responses to plant trait variation can favour or oppose critical steps in herbivore diversification. I provide statistical tools for analysing herbivore trait-space use, demonstrate their application for four herbivores of the goldenrodsSolidago altissimaandS. gigantea, and discuss their broader potential to advance our understanding of diet breadth and ecological speciation in phytophagous insects.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Jeffrey L. Feder ◽  
Scott P. Egan ◽  
Andrew A. Forbes

Habitat choice is an important component of most models of ecologically based speciation, especially when population divergence occurs in the face of gene flow. We examine how organisms choose habitats and ask whether avoidance behavior plays an important role in habitat choice, focusing on host-specific phytophagous insects as model systems. We contend that when a component of habitat choice involves avoidance, there can be repercussions that can have consequences for enhancing the potential for specialization and postzygotic reproductive isolation and, hence, for ecological speciation. We discuss theoretical and empirical reasons for why avoidance behavior has not been fully recognized as a key element in habitat choice and ecological speciation. We present current evidence for habitat avoidance, emphasizing phytophagous insects, and new results for parasitoid wasps consistent with the avoidance hypothesis. We conclude by discussing avenues for further study, including other potential roles for avoidance behavior in speciation related to sexual selection and reinforcement.


2015 ◽  
Author(s):  
Meredith L Cenzer

Locally adapted populations are often used as model systems for the early stages of ecological speciation, but most of these young divergent lineages will never become complete species. While the collapse of incipient species is theoretically common, very few examples have been documented in nature. Here I show that soapberry bugs (Jadera haematoloma) have lost adaptations to their native host plant (Cardiospermum corindum) and are regionally specializing on an invasive host plant (Koelreuteria elegans), collapsing a classic and well-documented example of local adaptation. All populations that were adapted to the native host - including those still found on that host today - are now better adapted to the invasive in multiple phenotypes. Weak differentiation remains in two traits, suggesting that homogenization across the region is incomplete. This study highlights the potential for adaptation to invasive species to disrupt native communities by swamping adaptation to native conditions through maladaptive gene flow.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Huai-Jun Xue ◽  
Yi-Wei Niu ◽  
Kari A. Segraves ◽  
Rui-E Nie ◽  
Ya-Jing Hao ◽  
...  

Abstract Background Altica (Coleoptera: Chrysomelidae) is a highly diverse and taxonomically challenging flea beetle genus that has been used to address questions related to host plant specialization, reproductive isolation, and ecological speciation. To further evolutionary studies in this interesting group, here we present a draft genome of a representative specialist, Altica viridicyanea, the first Alticinae genome reported thus far. Results The genome is 864.8 Mb and consists of 4490 scaffolds with a N50 size of 557 kb, which covered 98.6% complete and 0.4% partial insect Benchmarking Universal Single-Copy Orthologs. Repetitive sequences accounted for 62.9% of the assembly, and a total of 17,730 protein-coding gene models and 2462 non-coding RNA models were predicted. To provide insight into host plant specialization of this monophagous species, we examined the key gene families involved in chemosensation, detoxification of plant secondary chemistry, and plant cell wall-degradation. Conclusions The genome assembled in this work provides an important resource for further studies on host plant adaptation and functionally affiliated genes. Moreover, this work also opens the way for comparative genomics studies among closely related Altica species, which may provide insight into the molecular evolutionary processes that occur during ecological speciation.


2018 ◽  
Vol 44 (1) ◽  
pp. 20
Author(s):  
Eloiza Teles Caldart ◽  
Helena Mata ◽  
Cláudio Wageck Canal ◽  
Ana Paula Ravazzolo

Background: Phylogenetic analyses are an essential part in the exploratory assessment of nucleic acid and amino acid sequences. Particularly in virology, they are able to delineate the evolution and epidemiology of disease etiologic agents and/or the evolutionary path of their hosts. The objective of this review is to help researchers who want to use phylogenetic analyses as a tool in virology and molecular epidemiology studies, presenting the most commonly used methodologies, describing the importance of the different techniques, their peculiar vocabulary and some examples of their use in virology.Review: This article starts presenting basic concepts of molecular epidemiology and molecular evolution, emphasizing their relevance in the context of viral infectious diseases. It presents a session on the vocabulary relevant to the subject, bringing readers to a minimum level of knowledge needed throughout this literature review. Within its main subject, the text explains what a molecular phylogenetic analysis is, starting from a multiple alignment of nucleotide or amino acid sequences. The different software used to perform multiple alignments may apply different algorithms. To build a phylogeny based on amino acid or nucleotide sequences it is necessary to produce a data matrix based on a model for nucleotide or amino acid replacement, also called evolutionary model. There are a number of evolutionary models available, varying in complexity according to the number of parameters (transition, transversion, GC content, nucleotide position in the codon, among others). Some papers presented herein provide techniques that can be used to choose evolutionary models. After the model is chosen, the next step is to opt for a phylogenetic reconstruction method that best fits the available data and the selected model. Here we present the most common reconstruction methods currently used, describing their principles, advantages and disadvantages. Distance methods, for example, are simpler and faster, however, they do not provide reliable estimations when the sequences are highly divergent. The accuracy of the analysis with probabilistic models (neighbour joining, maximum likelihood and bayesian inference) strongly depends on the adherence of the actual data to the chosen development model. Finally, we also explore topology confidence tests, especially the most used one, the bootstrap. To assist the reader, this review presents figures to explain specific situations discussed in the text and numerous examples of previously published scientific articles in virology that demonstrate the importance of the techniques discussed herein, as well as their judicious use.Conclusion: The DNA sequence is not only a record of phylogeny and divergence times, but also keeps signs of how the evolutionary process has shaped its history and also the elapsed time in the evolutionary process of the population. Analyses of genomic sequences by molecular phylogeny have demonstrated a broad spectrum of applications. It is important to note that for the different available data and different purposes of phylogenies, reconstruction methods and evolutionary models should be wisely chosen. This review provides theoretical basis for the choice of evolutionary models and phylogenetic reconstruction methods best suited to each situation. In addition, it presents examples of diverse applications of molecular phylogeny in virology.


Sign in / Sign up

Export Citation Format

Share Document