scholarly journals A Systems Analysis Approach to Identifying Critical Success Factors in Drinking Water Source Protection Programs

Author(s):  
Hew Cameron Merrett ◽  
Wei Tong Chen ◽  
Jao Jia Horng

The success of source protection in ensuring safe drinking water is centered around being able to understand the hazards present in the catchment then plan and implement control measures to manage water quality risk to levels which can be controlled through downstream barriers. The programs in place to manage source protection are complex sociotechnical systems involving policy, standards, regulators, technology, human factors and so on. This study uses System Theoretic Process Analysis (STPA) to analyze the operational hazards of a typical drinking water source protection (DWSP) program and identify control measures to ensure safe operations. To validate the results a questionnaire was developed and distributed to specialists in DWSP in Taiwan, Australia and Greece. Using Principle Components Analysis (PCA) of the questionnaire responses, the study identified four critical success factors (CSFs) for DWSP. The four factors identified are ‘Policy and Government Agency Support of Source Protection’, ‘Catchment Risk Monitoring and Information’, ‘Support of Operational Field Activities’ and ‘Response to Water Quality Threats’. The results of this study provide insight into the approach of grouping of source protection measures to identify a series of targeted CSF for operational source protection programs. Using CSF can aide catchment management agencies in ensuring that the risk level in the catchment is managed effectively and that threats to public health from drinking water are managed appropriately.

2019 ◽  
Vol 11 (9) ◽  
pp. 2606 ◽  
Author(s):  
Hew Cameron Merrett ◽  
Wei Tong Chen ◽  
Jao Jia Horng

The success of source protection in ensuring safe drinking water is centered around being able to understand the hazards present in the catchment then plan and implement control measures to manage water quality risk to levels which can be controlled through downstream barriers. The programs in place to manage source protection are complex sociotechnical systems involving policy, standards, regulators, technology, human factors and so on. This study uses System Theoretic Process Analysis (STPA) to analyze the operational hazards of a typical drinking water source protection (DWSP) program and identify countermeasures to ensure safe operations. To validate the STPA results a questionnaire was developed based on selective grouping of the initial countermeasures identified and distributed to specialists in DWSP in Taiwan, Australia and Greece. Through statistical analysis using Principle Components Analysis (PCA), the study identified four critical success factors (CSFs) for DWSP based on the questionnaire responses. The four CSFs identified were “Policy and Government Agency Support of Source Protection”, “Catchment Risk Monitoring and Information”, “Support of Operational Field Activities” and “Response to Water Quality Threats”. The results of this study provide insight into the approach of grouping of source protection measures to identify a series of targeted CSF for operational source protection programs. Using CSF can aid catchment management agencies in ensuring that the risk level in the catchment is managed effectively and that threats to public health from drinking water are managed appropriately.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2437
Author(s):  
Alec Rolston ◽  
Suzanne Linnane

Source protection is part of a multi-solution approach for the provision of safe drinking water. In the Republic of Ireland, community-led Group Water Schemes (GWS) provide treated drinking water to approximately 69,000 rural households. Between 2009 and 2019, preliminary source protection assessments were undertaken for 70 GWS abstracting from surface water sources to provide physical catchment characterisation and untreated and treated water quality analysis. Catchment areas upstream of abstraction points varied in size, with 51.5% being less than 5 km2 and only 10.7% being larger than 100 km2. The majority (91%) of assessed GWS serve a population of less than 3000 people, and 94% supply less than 1500 m3 per day. Exceedances of the EU Drinking Water Regulations were recorded for 27 parameters, with the greatest number of exceedances due to total trihalomethanes followed by microbial contamination. The most frequent recommendation for improving GWS drinking water quality was associated with managing livestock access to local water bodies. Improving stakeholder engagement represented 38% of all recommendations made. Drinking water source protection measures and catchment-scale actions can be an additional model to assist in the delivery of Integrated Catchment Management and river basin management planning in the Republic of Ireland. For the GWS sector, challenges lie in securing resources to improve both source water and drinking water quality to deliver integrated catchment management plans for source protection.


2020 ◽  
Vol 10 (3) ◽  
pp. 539-548
Author(s):  
V. M. Jayasooriya ◽  
V. M. M. Perera ◽  
S. Muthukumaran

Abstract Chronic Kidney Disease of uncertain etiology (CKDu) is a fatal disease that causes death from kidney failure due to unknown risk factors and has already affected more than 400,000 people in the rural agricultural landscape (dry zone) of Sri Lanka. The major drinking source in Sri Lanka is groundwater and it is suspected that the pollution of groundwater sources due to agricultural means has a major impact on CKDu. The primary objective of this study is to determine whether rainwater can be used as an alternative safe drinking water source in Girandurukotte area, Sri Lanka, which is known to be an area endemic for CKDu. The physical, chemical, and biological analyses were performed to compare the water quality parameters of three water sources (groundwater, surface water, and rainwater) for Girandurukotte area. The most common storage tanks in polyethylene (PE) and ferrocement (FC) were compared to assess the influence of the material of rainwater tank on water quality. The results showed that there is a significant difference in rainwater in terms of water quality compared to groundwater and surface water. Rainwater in FC and PE tanks showed significant differences (p < 0.05) for some parameters however, they were still within accepted potable drinking water standards.


Sign in / Sign up

Export Citation Format

Share Document