Fuzzy Assessment and Analysis of Water Quality on Drinking Water Source in Handan City

2012 ◽  
Vol 7 (21) ◽  
pp. 197-204 ◽  
Author(s):  
Jihong Zhou ◽  
Hui Ma ◽  
Yanqi Wei
Author(s):  
Hew Cameron Merrett ◽  
Wei Tong Chen ◽  
Jao Jia Horng

The success of source protection in ensuring safe drinking water is centered around being able to understand the hazards present in the catchment then plan and implement control measures to manage water quality risk to levels which can be controlled through downstream barriers. The programs in place to manage source protection are complex sociotechnical systems involving policy, standards, regulators, technology, human factors and so on. This study uses System Theoretic Process Analysis (STPA) to analyze the operational hazards of a typical drinking water source protection (DWSP) program and identify control measures to ensure safe operations. To validate the results a questionnaire was developed and distributed to specialists in DWSP in Taiwan, Australia and Greece. Using Principle Components Analysis (PCA) of the questionnaire responses, the study identified four critical success factors (CSFs) for DWSP. The four factors identified are ‘Policy and Government Agency Support of Source Protection’, ‘Catchment Risk Monitoring and Information’, ‘Support of Operational Field Activities’ and ‘Response to Water Quality Threats’. The results of this study provide insight into the approach of grouping of source protection measures to identify a series of targeted CSF for operational source protection programs. Using CSF can aide catchment management agencies in ensuring that the risk level in the catchment is managed effectively and that threats to public health from drinking water are managed appropriately.


2020 ◽  
Vol 10 (3) ◽  
pp. 539-548
Author(s):  
V. M. Jayasooriya ◽  
V. M. M. Perera ◽  
S. Muthukumaran

Abstract Chronic Kidney Disease of uncertain etiology (CKDu) is a fatal disease that causes death from kidney failure due to unknown risk factors and has already affected more than 400,000 people in the rural agricultural landscape (dry zone) of Sri Lanka. The major drinking source in Sri Lanka is groundwater and it is suspected that the pollution of groundwater sources due to agricultural means has a major impact on CKDu. The primary objective of this study is to determine whether rainwater can be used as an alternative safe drinking water source in Girandurukotte area, Sri Lanka, which is known to be an area endemic for CKDu. The physical, chemical, and biological analyses were performed to compare the water quality parameters of three water sources (groundwater, surface water, and rainwater) for Girandurukotte area. The most common storage tanks in polyethylene (PE) and ferrocement (FC) were compared to assess the influence of the material of rainwater tank on water quality. The results showed that there is a significant difference in rainwater in terms of water quality compared to groundwater and surface water. Rainwater in FC and PE tanks showed significant differences (p < 0.05) for some parameters however, they were still within accepted potable drinking water standards.


2019 ◽  
Vol 11 (9) ◽  
pp. 2606 ◽  
Author(s):  
Hew Cameron Merrett ◽  
Wei Tong Chen ◽  
Jao Jia Horng

The success of source protection in ensuring safe drinking water is centered around being able to understand the hazards present in the catchment then plan and implement control measures to manage water quality risk to levels which can be controlled through downstream barriers. The programs in place to manage source protection are complex sociotechnical systems involving policy, standards, regulators, technology, human factors and so on. This study uses System Theoretic Process Analysis (STPA) to analyze the operational hazards of a typical drinking water source protection (DWSP) program and identify countermeasures to ensure safe operations. To validate the STPA results a questionnaire was developed based on selective grouping of the initial countermeasures identified and distributed to specialists in DWSP in Taiwan, Australia and Greece. Through statistical analysis using Principle Components Analysis (PCA), the study identified four critical success factors (CSFs) for DWSP based on the questionnaire responses. The four CSFs identified were “Policy and Government Agency Support of Source Protection”, “Catchment Risk Monitoring and Information”, “Support of Operational Field Activities” and “Response to Water Quality Threats”. The results of this study provide insight into the approach of grouping of source protection measures to identify a series of targeted CSF for operational source protection programs. Using CSF can aid catchment management agencies in ensuring that the risk level in the catchment is managed effectively and that threats to public health from drinking water are managed appropriately.


Sign in / Sign up

Export Citation Format

Share Document