scholarly journals Super-Wide Impedance Bandwidth Planar Antenna Based on Metamaterial Concept for Microwave and Millimetre-Wave Applications

Author(s):  
Mohammad Alibakhshikenari ◽  
Bal S. Singh ◽  
Chan H. See ◽  
Raed A. Abd-Alhameed ◽  
Francisco Falcone ◽  
...  

A novel configuration for a super-wide impedance planar antenna is presented based on a 2 × 2 microstrip patch antenna (MPA). The antenna comprises a symmetrical arrangement of four-square patches that are interconnected to each other with cross-shaped high impedance microstrip lines. The antenna array is exciting through a single feedline connected to one of the patches. The proposed antenna array configuration overcomes the main drawback of conventional MPA of narrow bandwidth that is typically <5%. The antenna exhibits a super-wide frequency bandwidth from 20 GHz to 120 GHz for S11<−15 dB, which corresponds to a fractional bandwidth of 142.85%. The antenna’s performance of bandwidth, impedance match, and radiation gain were enhanced by etching slots on the patches. The slotted microstrip patch essentially acts like a left-handed capacitance to exhibit metamaterial properties over a given frequency range. With the inclusion of the slot the maximum radiation gain and efficiency of the MPA have increased to 15.11 dBi and 85.79% at 80 GHz, which show an improvement of 2.58 dBi and 12.54%, respectively. The dimension of each patch antenna is 30 × 30 mm2. The results show that the proposed MPA is useful for various communications existing and emerging systems such as ultra-wideband (UWB) communications, RFID systems, massive multiple-output multiple-input (MIMO) for 5G, and radar systems.

Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2306 ◽  
Author(s):  
Mohammad Alibakhshikenari ◽  
Bal Singh Virdee ◽  
Chan H. See ◽  
Raed A. Abd-Alhameed ◽  
Francisco Falcone ◽  
...  

A feasibility study of a novel configuration for a super-wide impedance planar antenna is presented based on a 2 × 2 microstrip patch antenna (MPA) using CST Microwave Studio. The antenna comprises a symmetrical arrangement of four-square patches that are interconnected to each other with cross-shaped high impedance microstrip lines. The antenna array is excited through a single feedline connected to one of the patches. The proposed antenna array configuration overcomes the main drawback of conventional MPA with a narrow bandwidth that is typically <5%. The antenna exhibits a super-wide frequency bandwidth from 20 GHz to 120 GHz for S11 < −15 dB, which corresponds to a fractional bandwidth of 142.85%. The antenna’s performance of bandwidth, impedance match, and radiation gain were enhanced by etching slots on the patches. With the inclusion of the slot, the maximum radiation gain and efficiency of the MPA increased to 15.11 dBi and 85.79% at 80 GHz, which showed an improvement of 2.58 dBi and 12.54%, respectively. The dimension of each patch antenna was 4.3 × 5.3 mm2. The results showed that the proposed MPA is useful for various existing and emerging communication systems such as ultra-wideband (UWB) communications, RFID systems, massive multiple-output multiple-input (MIMO) for 5G, and radar systems.


This research article gives a detailed insight of the design, simulation of a compact circular shaped microstrip patch antenna that is fed using a coplanar waveguide feed (CPW for practical wireless communication applications). The antenna is typically designed for Ultra wideband (1.46-6GHz), Bluetooth (2.4GHz), ZIGBEE (2.4GHz), WLAN (5.15- 5.35 GHz and 5.725- 5.825), Wi-Fi (2.4-2.485GHz) and HIPERLAN-2(5.15 - 5.35 GHz and 5.470 -5.725GHz) wireless applications with stop band characteristics for the H (partial C band). The proposed antenna has an overall packaged structure dimensions of 78 x75 x1.605 mm3 and is fabricated on FR4 substrate as a circular patch antenna with a coplanar ground .The commercially available laminate FR4 substrate that is used has a dielectric constant of 4.4, height of 1.6mm and a loss tangent of 0.0024.The prospective antenna shows a simulated impedance bandwidth of 4.54 GHz. The coplanar waveguide feeding used with this antenna helps in improving antenna performance in terms of its impedance bandwidth as this geometry helps in creating multiple current loops at the antenna structure, thereby exciting nearby frequencies that merge to show a broadband of operation. The antenna’s operational bandwidth is also improved by the concept of modified ground, in which triangular and rectangular shapes are added symmetrically on both sides of ground plane that provide a better fringing effect and hence an improved bandwidth.


2021 ◽  
Author(s):  
Suganthi Santhanam ◽  
Thiruvalar Selvan Palavesam

Abstract This paper presents the design of flexible trapezoidal radiating patch antenna array with FR4 substrate for onbody low frequency medical applications. The array resonates at 1.89 GHz with impedance bandwidth of 80 MHz and low return loss of -26.19 dB. The VSWR of 1.103 validate the activeness of the proposed antenna array having maximum surface current 133.1 (A/m) and directivity of 4.48 dBi. The antenna array exhibit the H-Field strength of 160.52 (A/m) and E-Field of 36093.4 (V/m) prove the radiation capability at low frequency on body application. These properties demonstrate the suitability of proposed array antenna for on body medical wireless applications.


2019 ◽  
Vol 13 (10) ◽  
pp. 1671-1677 ◽  
Author(s):  
Oluwole John Famoriji ◽  
Shitan Yang ◽  
Yang Li ◽  
Wenhao Chen ◽  
Akinwale Fadamiro ◽  
...  

2017 ◽  
Vol 9 (9) ◽  
pp. 1877-1881 ◽  
Author(s):  
Laaya Sabri ◽  
Nasrin Amiri ◽  
Keyvan Forooraghi

A new single-feed aperture-coupled, X-band microstrip patch antenna array with circular polarization (CP) is designed. CP is achieved using indented microstrip patches fed through the slots on a substrate integrated waveguide. The antenna has the high radiation efficiency more than 90% over the operating frequency. Impedance bandwidth (VSWR < 2) and axial ratio bandwidth (AR < 3 dB) of 11.8, and 10.9% is attained, respectively. Good agreement is achieved between simulated and measured results.


1995 ◽  
Vol 31 (1) ◽  
pp. 2-4 ◽  
Author(s):  
M.G. Keller ◽  
D. Roscoe ◽  
A. Ittipiboon ◽  
Y.M.M. Antar

This paper presents the prototype and simulations of a compact rectangular microstrip patch antenna for ultra-wideband applications. The proposed antenna is printed on FR4 (Flame Retardant) substrate with relative permittivity of 4.4, dielectric loss tangent of 0.0024 and the dimensions of 57 × 25 × 1.57 mm3 . The radiating patch of the antenna is loaded with two rectangular stubs along its upper and lower edges and an equilateral triangular notch is truncated from the reduced ground plane to achieve optimum results in terms of bandwidth and reflection coefficient. It is fed along the centerline of symmetry by 50Ω microstrip feed line. The simulated return loss ( ) characteristics show that the proposed antenna has a capability of covering the wireless bands from 0.17GHz to 7.25GHz with impedance bandwidth of 7.08GHz and exhibits a peak gain of 5dB at 7.25GHz which is acceptable for UWB systems.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 415
Author(s):  
Haiyue Wang ◽  
Lianwen Deng ◽  
Heng Luo ◽  
Junsa Du ◽  
Daohan Zhou ◽  
...  

The microwave wireless power transfer (MWPT) technology has found a variety of applications in consumer electronics, medical implants and sensor networks. Here, instead of a magnetic resonant coupling wireless power transfer (MRCWPT) system, a novel MWPT system based on a frequency reconfigurable (covering the S-band and C-band) microstrip patch antenna array is proposed for the first time. By switching the bias voltage-dependent capacitance value of the varactor diode between the larger main microstrip patch and the smaller side microstrip patch, the working frequency band of the MWPT system can be switched between the S-band and the C-band. Specifically, the operated frequencies of the antenna array vary continuously within a wide range from 3.41 to 3.96 GHz and 5.7 to 6.3 GHz. For the adjustable range of frequencies, the return loss of the antenna array is less than −15 dB at the resonant frequency. The gain of the frequency reconfigurable antenna array is above 6 dBi at different working frequencies. Simulation results verified by experimental results have shown that power transfer efficiency (PTE) of the MWPT system stays above 20% at different frequencies. Also, when the antenna array works at the resonant frequency of 3.64 GHz, the PTE of the MWPT system is 25%, 20.5%, and 10.3% at the distances of 20 mm, 40 mm, and 80 mm, respectively. The MWPT system can be used to power the receiver at different frequencies, which has great application prospects and market demand opportunities.


Sign in / Sign up

Export Citation Format

Share Document