Carvacrol Improves Erectile Dysfunction in Spontaneously Hypertensive Rats

Author(s):  
Tays Gonçalves ◽  
Priscilla Maciel ◽  
Larissa Villanueva ◽  
Pablo Santos ◽  
Ismael Oliveira Junior ◽  
...  

Carvacrol is a monoterpene found in essential oils from various plants. Several pharmacological properties have already been described for carvacrol, including antimicrobial, anti-inflammatory, anticarcinogenic, antioxidant, vasorelaxant and hypotensive activities. The present study evaluated the effect of carvacrol on hypertensive rats with erectile dysfunction. Twelve-week-old spontaneously hypertensive rats (SHR) were treated with vehicle, carvacrol (50 or 100 mg/kg/day) or sildenafil (1.5 mg/kg/day), intragastrically, for four weeks. Wistar Kyoto (WKY) rats were used as the normotensive controls. All substances tested reduced systolic blood pressure during the treatment period. The intracavernosal pressure/mean arterial pressure ratio of the hypertensive rats was improved by carvacrol and sildenafil treatments. In isolated rat corpora cavernosa, the acetylcholine- and SNP-induced relaxation responses were significantly increased by carvacrol or sildenafil treatments. In SHR corpora cavernosa, treatment with carvacrol attenuated the hypercontractility induced by phenylephrine or electrical field stimulation. Phe-induced hypercontractility in the presence of tempol was not altered when compared to the response induced by carvacrol alone. In rat corpora cavernosa fluorescence intensity emitted by the DHE probe was significantly reduced in SHR treated (carvacrol or sildenafil) groups when compared to that emitted in the SHR-CTL. This study showed that carvacrol improves the erectile function of hypertensive rats and reduces endothelial dysfunction, smooth muscle cell hypercontractility and superoxide anion generation.

1990 ◽  
Vol 79 (5) ◽  
pp. 437-442 ◽  
Author(s):  
Liliana M. E. Finocchiaro ◽  
Angelika Scheucher ◽  
Azucena L. Alvarez ◽  
Samuel Finkielman ◽  
Victor E. Nahmod ◽  
...  

1. Choline acetyltransferase activity and [3H]quinuclidinyl benzylate-binding sites were detected in the pineal gland of normotensive Wistar—Kyoto rats and of spontaneously hypertensive rats. 2. In vitro, muscarinic activation by pilocarpine increased the pineal metabolic production of hydroxyindole derivatives up to 5-hydroxytryptamine and produced a less marked stimulation of melatonin biosynthesis. 3. Electrical field stimulation of pineal gland slices caused similar metabolic effects. 4. Muscarinic blockade with atropine inhibited the effects on hydroxyindole metabolism. 5. [3H]Quinuclidinyl benzylate-binding sites, indicative of muscarinic receptors, were more numerous, and basal 5-hydroxytryptamine and melatonin levels were higher, in the pineal gland of spontaneously hypertensive rats compared with Wistar—Kyoto rats. 6. The atropine-sensitive metabolic effects of pilocarpine and electrical field stimulation on the pineal gland were increased in spontaneously hypertensive rats compared with Wistar-Kyoto rats.


2003 ◽  
Vol 284 (3) ◽  
pp. R682-R688 ◽  
Author(s):  
Delphine Behr-Roussel ◽  
Philippe Chamiot-Clerc ◽  
Jacques Bernabe ◽  
Katell Mevel ◽  
Laurent Alexandre ◽  
...  

Hypertensive men have a higher prevalence of erectile dysfunction (ED) than the general population. Experimental evidence of ED in hypertensive animals is scarce. This study evaluates the erectile function of spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto rats (WKY) in vivo by the increase in intracavernosal pressure after electrical stimulation of the cavernous nerve (CN) and by isometric tension studies on corporal strips. Frequency-dependent erectile responses to CN stimulations were reduced in SHR. Phenylephrine induced lower corporal contractions in SHR although pD2 values were similar to WKY. Endothelium-dependent relaxations to ACh were impaired significantly in SHR, and indomethacin improved these relaxations in both WKY and SHR, the latter thus reaching values similar to WKY. Corporal relaxations to sodium nitroprusside were enhanced in SHR. Thus a dysfunctional α-adrenergic contraction of the corporal smooth muscle, an increased cyclooxygenase-dependent constrictor tone, and/or a defect in endothelium-dependent reactivity are associated with the altered erectile mechanisms in SHR. Drugs targeting endothelial dysfunction may delay the occurrence of ED as a complication of hypertension.


1998 ◽  
Vol 275 (4) ◽  
pp. R1366-R1373 ◽  
Author(s):  
Katarina Persson ◽  
Raj K. Pandita ◽  
John M. Spitsbergen ◽  
William D. Steers ◽  
Jeremy B. Tuttle ◽  
...  

The influence of noradrenergic mechanisms involved in micturition in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats was investigated using continuous cystometry in in vivo and in vitro studies on isolated bladder and urethral tissues. Compared with WKY rats, SHR had a significantly lower bladder capacity (SHR: 0.7 ± 0.05 ml; WKY rats: 1.3 ± 0.06 ml; P < 0.001), micturition volume (SHR: 0.4 ± 0.04 ml, WKY rats: 1.2 ± 0.05 ml; P < 0.001), and an increased amplitude of nonvoiding (unstable) bladder contractions. The effects of intrathecal and intra-arterial doxazosin on cystometric parameters were more pronounced in SHR than in WKY rats. There was a marked reduction in nonvoiding contractions after intrathecal (but not intra-arterial) doxazosin in SHR. Norepinephrine (0.1 μM–1 mM) failed to evoke contractions in bladder strips from WKY rats, in contrast to a weak contractile response in SHR. The response to electrical field stimulation was significantly less in bladder strips from SHR than from WKY rats. In WKY rats, norepinephrine produced concentration-dependent inhibition (87 ± 5%, n = 6) of nerve-evoked bladder contractions. Almost no inhibition (11 ± 8%, n = 6) was found in SHR. Alterations in bladder function of SHR appear to be associated with changes in the noradrenergic control of the micturition reflex, in addition to an increased smooth muscle and decreased neuronal responsiveness to norepinephrine. The marked reduction in nonvoiding contractions after intrathecal doxazosin suggests that the bladder hyperactivity in SHR has at least part of its origin in supraspinal and/or spinal structures.


1995 ◽  
Vol 78 (1) ◽  
pp. 101-111 ◽  
Author(s):  
J. M. Lash ◽  
H. G. Bohlen

These experiments determined whether a deficit in oxygen supply relative to demand could account for the sustained decrease in tissue PO2 observed during contractions of the spinotrapezius muscle in spontaneously hypertensive rats (SHR). Relative changes in blood flow were determined from measurements of vessel diameter and red blood cell velocity. Venular hemoglobin oxygen saturation measurements were performed by using in vivo spectrophotometric techniques. The relative dilation [times control (xCT)] of arteriolar vessels during contractions was as large or greater in SHR than in normotensive rats (Wistar-Kyoto), as were the increases in blood flow (2 Hz, 3.50 +/- 0.69 vs. 3.00 +/- 1.05 xCT; 4 Hz, 10.20 +/- 3.06 vs. 9.00 +/- 1.48 xCT; 8 Hz, 16.40 +/- 3.95 vs. 10.70 +/- 2.48 xCT). Venular hemoglobin oxygen saturation was lower in the resting muscle of SHR than of Wistar-Kyoto rats (31.0 +/= 3.0 vs. 43.0 +/- 1.9%) but was higher in SHR after 4- and 8-Hz contractions (4 Hz, 52.0 +/- 4.8 vs. 43.0 +/- 3.6%; 8 Hz, 51.0 +/- 4.6 vs. 41.0 +/- 3.6%). Therefore, an excess in oxygen delivery occurs relative to oxygen use during muscle contractions in SHR. The previous and current results can be reconciled by considering the possibility that oxygen exchange is limited in SHR by a decrease in anatomic or perfused capillary density, arteriovenular shunting of blood, or decreased transit time of red blood cells through exchange vessels.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 676
Author(s):  
Kunanya Masodsai ◽  
Yi-Yuan Lin ◽  
Sih-Yin Lin ◽  
Chia-Ting Su ◽  
Shin-Da Lee ◽  
...  

This study aimed to investigate the aging-related endothelial dysfunction mediated by insulin and insulin-like growth factor-1 (IGF-1) and antioxidant deficiency in hypertension. Male spontaneously hypertensive rats (SHRs) and age-matched normotensive Wistar–Kyoto rats (WKYs) were randomly divided into 24-week-old (younger) and 48-week-old (older) groups, respectively. The endothelial function was evaluated by the insulin- and IGF-1-mediated vasorelaxation of aortic rings via the organ bath system. Serum levels of nitric oxide (NO), malondialdehyde (MDA), catalase, and total antioxidant capacity (TAC) were examined. The insulin- and IGF-1-mediated vasorelaxation was significantly impaired in both 24- and 48-week-old SHRs compared with age-matched WKYs and was significantly worse in the 48-week-old SHR than the 24-week-old SHR. After pretreatments of phosphoinositide 3-kinase (PI3K) or NO synthase (NOS) inhibitors, the insulin- and IGF-1-mediated vasorelaxation became similar among four groups. The serum level of MDA was significantly increased, while the NO, catalase, and TAC were significantly reduced in the 48-week-old SHR compared with the 24-week-old SHR. This study demonstrated that the process of aging additively affected insulin- and IGF-1-mediated endothelial dysfunction in SHRs, which could be partly attributed to the reduced NO production and antioxidant deficiency.


Sign in / Sign up

Export Citation Format

Share Document