scholarly journals Modeling Natural Gas Compressibility Factor Using a Hybrid Group Method of Data Handling

Author(s):  
Abdolhossein Hemmati-Sarapardeh ◽  
Sassan Hajirezaie ◽  
Mohamad Reza Soltanian ◽  
Amir Mosavi ◽  
Shahab Shamshirband

A Natural gas is increasingly being sought after as a vital source of energy, given that its production is very cheap and does not cause the same environmental harms that other resources, such as coal combustion, do. Understanding and characterizing the behavior of natural gas is essential in hydrocarbon reservoir engineering, natural gas transport, and process. Natural gas compressibility factor, as a critical parameter, defines the compression and expansion characteristics of natural gas under different conditions. In this study, a simple second-order polynomial model based on the group method of data handling (GMDH) is presented to determine the compressibility factor of different natural gases at different conditions, using corresponding state principles. The accuracy of the model evaluated through graphical and statistical analyses. The results show that the model is capable of predicting natural gas compressibility with an average absolute error of only 2.88%, a root means square of 0.03, and a regression coefficient of 0.92. The performance of the developed model compared to widely known, previously published equations of state (EOSs) and correlations, and the precision of the results demonstrates its superiority over all other correlations and EOSs.

Author(s):  
Abdolhossein Hemmati-Sarapardeh ◽  
Sassan Hajirezaie ◽  
Mohamad Reza Soltanian ◽  
Amir Mosavi ◽  
Narjes Nabipour ◽  
...  

2021 ◽  
Vol 2(73) (2) ◽  
pp. 13-21
Author(s):  
George Iulian Oprea ◽  
◽  
Artemis Aidoni ◽  
Ioana Cornelia Mitrea ◽  
Florinel Dinu ◽  
...  

The natural gas compressibility factor indicates the compression and expansion characteristics of natural gas under different conditions. It is a thermodynamic property used to take into account the deviation of the behaviour of real natural gases from that of an ideal gas. Compressibility factor, Z, values of natural gases are necessary for most petroleum gas engineering calculations. In this study, a comparison between five different calculation methods is presented to determine this critical parameter for the same natural gas at different conditions (pressure and temperature), using Canadian Association of Petroleum Producers, Azizi, Behbahani and Isazadeh, Dranchuk- Purvis- Robinson, Dranchuk-Abu-Kassem and Standing- Katz methods. The correlations are based on the equation of state are often implicit because they require iteration. Many correlations have been derived to enhance simplicity; however, no correlation has been developed for the entire range of pseudo-reduced pressures and temperatures. Azizi, Behbahani and Isazadeh’s method was found to have the biggest error as a result obtained for T=20° C, and p=20 bar is no longer in the field of applicability.


2021 ◽  
pp. 35-40
Author(s):  
Denis Y. Kutovoy ◽  
Igor A. Yatsenko ◽  
Vladimir B. Yavkin ◽  
Aydar N. Mukhametov ◽  
Petr V. Lovtsov ◽  
...  

The actual problem of the possibility of using the equations of state for the gas phase of natural gas at temperatures below 250 K is considered. To solve it, the compressibility coefficients of natural gas obtained experimentally with high accuracy are required. The technique was developed and experimental study was carried out of compressibility factor aiming expanding temperature range of the state equations GERG-2004 and AGA8-DC92. The proposed technique is based on the fact that to assess the applicability of the equation of state, it is sufficient to obtain the relative value of the compressibility coefficient and not to determine its absolute value. The technique does not require complex equipment and provides high accuracy. The technique was tested on nitrogen, argon, air and methane. Uncertainty of determination of the compressibility factor is not greater than 0.1 %. For two different compositions of natural gas, obtained experimental data were demonstrated that the equations of state GERG-2004 and AGA8-92DC provide uncertainty of the calculation of the compressibility coefficient within 0.1 % in the temperature range from 220 K to 250 K and pressure below 5 MPa.


Author(s):  
Xiaocui Tian ◽  
Xiaokai Xing ◽  
Rui Chen ◽  
Shubao Pang ◽  
Liu Yang

In the custody transfer metering of natural gas, it’s necessary to transform gas volume from metering state into standard state. Natural gas is non-ideal gas, and its compressibility factor varies with different components, temperature and pressure. So the accuracy of its calculation has direct impact on that of natural gas metering, and then affects the economic benefits of the enterprise [1]. According to related standard of China, in the custody transfer metering of natural gas, the formula stipulated by AGA NO.8 should be adopted to calculate compressibility factor. But the components of natural gas must be monitored at all times when this method is used, and the calculation process is complicated. In practical operation of natural gas trade, compressibility factor changes because of frequent adjustment of pipeline operating conditions. In order to simplify the calculation, simplified formula is applied to calculate compressibility factor generally, but it’s difficult to guarantee the accuracy at the same time. In this paper, the simplified formula, which is used for calculating natural gas compressibility factor of a joint-stock natural gas pipeline of CNPC, is modified with the standard formula stipulated by AGA NO.8. After the modification, an empirical formula of compressibility factor calculation applicable to this pipeline system is proposed, whereby the accuracy of compressibility factor calculation is improved. When the modified one is applied to natural gas trade, the accuracy of metering is improved likewise.


2013 ◽  
Vol 63 ◽  
pp. 38-43 ◽  
Author(s):  
Ke-Le Yan ◽  
Huang Liu ◽  
Chang-Yu Sun ◽  
Qing-Lan Ma ◽  
Guang-Jin Chen ◽  
...  

2021 ◽  
Author(s):  
Bella Mmata ◽  
Hilary Okeke ◽  
Mike Onyekonwu ◽  
Jesse Joshua

Abstract Hydrocarbon dew point (HDP) temperature is defined as the temperature at which the first hydrocarbon liquid begins to condense in a natural gas cooled at constant pressure, which is an important qualitative parameter for pipeline operators. Hydrocarbon liquid drops-out along the gas pipeline will decrease the effective cross-sectional area of the pipes causing increased pressure drop, reduced line capacity as well as system shutdowns. It is therefore imperative that the gas pipelines be operated above the hydrocarbon dew point (HDP) temperature to ensure a trouble free line; this of course requires the knowledge of the HDP for the pipeline. In this work, onsite measurement of the HDP of 5 different natural gases from different flow stations and gas processing plants in the Niger-Delta region was done using an automatic optical condensation dew point meter. Subsequently, each of the gases was collected in stainless steel Proserv bottles and taken to the laboratory for compositional analysis using gas chromatographic technique with reference to GPA 2286. In addition, the Peng Robinson (PR) and Soave Redlich Kwong (SRK) Equations of state (EOS) were used to predict the hydrocarbon dew point temperature of the gases at the flow line pressures. The Average Absolute Error (AAE) for EOS PR was 9.33% while that for EOS SRK was 14.68%. Obviously, it showed that PR EOS gave better predictions than SRK EOS. The result of this work also showed that even a 50% variation in molar contributions of the non-hydrocarbon components had negligible effects on the predicted hydrocarbon dew point temperatures for all the gas samples tested.


Sign in / Sign up

Export Citation Format

Share Document