gas compressibility
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 25)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Kristian Mogensen ◽  
Robert Merrill

Abstract The gas compressibility factor is an important property in reservoir simulation studies. It is directly linked to the gas formation volume factor and the gas density thereby impacting wellhead injection pressure, reservoir voidage, injectivity, as well as the tendency for gas gravity override to occur in the reservoir. ADNOC's PVT database contains experiments on almost 2,000 samples, of which more than 100 have been subject to advanced gas injection experiments. Z-factor data have been compiled from the liberated gas during DV experiments as well as from CCE experiments on reservoir gases, injection gases, and swollen fluid mixtures. Several of these mixtures are very rich in H2S, whereas pressure and temperature are in the range of 14.7-14,500 psia and 80-365 °F, respectively. We test several different methods for predicting the Z-factor, such as the industry-standard Hall-Yarborough method, in combination with various models for pseudo-critical pressure and temperature and including correction for non-hydrocarbon components. Other methods tested include the GERG-2008 model, considered to be state-of-the-art for predicting physical properties for well-described gas mixtures, as well as the well-known Peng-Robinson cubic equation of state. Based on close to 10,000 data points in our database, the GERG-2008 model typically predicts the Z-factor to be within 2% of the measured value, which is on par with the experimental uncertainty. However, for some rich gas condensate mixtures, the model gives larger errors because its parameters are only tuned to compositions with components up to C10. This is to our knowledge the first time that the GERG-2008 EOS has been compared to standard Z-factor correlations for such a large number of data points. If compositional information is available, we recommend using either the GERG-2008 model or the Hall-Yarborough model with pseudo-critical properties provided by Kay (1936). When compositions are not available, we find that the Standing correlation is more accurate than the Sutton model, also for sour mixtures.


2021 ◽  
Author(s):  
Oluwasegun Cornelious Omobolanle ◽  
Oluwatoyin Olakunle Akinsete

Abstract Accurate prediction of gas compressibility factor is essential for the evaluation of gas reserves, custody transfer and design of surface equipment. Gas compressibility factor (Z) also known as gas deviation factor can be evaluated by experimental measurement, equation of state and empirical correlation. However, these methods have been known to be expensive, complex and of limited accuracy owing to the varying operating conditions and the presence of non-hydrocarbon components in the gas stream. Recently, newer correlations with extensive application over wider range of operating conditions and crude mixtures have been developed. Also, artificial intelligence is now being deployed in the evaluation of gas compressibility factor. There is therefore a need for a holistic understanding of gas compressibility factor vis-a-vis the cause-effect relations of deviation. This paper presents a critical review of current understanding and recent efforts in the estimation of gas deviation factor.


2021 ◽  
pp. 39-42
Author(s):  
S.F. Musaev ◽  

The paper deals with the issues of the implementation of coalessors for the separation of multi-phase fluids into particular phases during oil preparation for transportation. Various coalessors of liquid/liquid type (for separation of oil emulsions) and liquid/gas (for gas separation) have been analyzed. The results of the coalessor implementation are presented, the maximum sizes of water drops washed with oil flow estimated, the necessity of the consideration of gas compressibility rate during the evaluation of the sedimentation of mechanical particles marked.


Author(s):  
OMOBOLANLE Oluwasegun Cornelious ◽  
AKINSETE Oluwatoyin Olakunle ◽  
AROMOKEYE Niyi

The need for a simpler, effective and less expensive predictive tool for the estimation of natural gas compressibility factor cannot be exaggerated. An accurate prediction of gas compressibility factor is essential because it plays a definitive role in evaluating gas reservoir properties used in the estimation of gas reserves, custody transfer and design of surface equipment. In this present work, a novel explicit correlation and a highly sophisticated computer program were developed to accurately predict natural gas deviation factor. The research also aims to effectively capture the relationship between Pseudo-reduced temperature and pressure in relations to the Z-factor. In this study, 3972 digitized data points extracted from Standing and Katz’s Chart were regressed and analyzed using Microsoft Excel Spreadsheet, the extraction of this data was done using WebPlotDigitizer developed by Ankit Rohatgi of GitHub, Pacifica, CA, USA. The correlation was developed as a function of Pseudo-reduced temperature and pressure with tuned parameters distributed across 1.05 ≤ Tpr ≤ 3.0 and 0 < Ppr ≤ 8.0. Subsequently, the input (Tpr and Ppr values) of the feed data was used to validate the correlation and compare it with other known and published correlations. Statistical analysis of the results showed that a 99.8% agreement exists between the predicted and actual compressibility factors for the various test scenarios and case studies involving both sweet and sour gases. Also, the correlation was observed to outperform other models. Finally, the results were observed to perfectly mimic the Standing and Katz charts with an overall correlation coefficient of 99.76% and an adjusted R2 of 99.75%. The proposed correlation was subsequently used to develop a software using JavaScript. Undoubtedly, the proposed correlation and software are suitable for rapid and accurate simplification and prediction of natural gas compressibility factor.


2021 ◽  
Vol 2(73) (2) ◽  
pp. 13-21
Author(s):  
George Iulian Oprea ◽  
◽  
Artemis Aidoni ◽  
Ioana Cornelia Mitrea ◽  
Florinel Dinu ◽  
...  

The natural gas compressibility factor indicates the compression and expansion characteristics of natural gas under different conditions. It is a thermodynamic property used to take into account the deviation of the behaviour of real natural gases from that of an ideal gas. Compressibility factor, Z, values of natural gases are necessary for most petroleum gas engineering calculations. In this study, a comparison between five different calculation methods is presented to determine this critical parameter for the same natural gas at different conditions (pressure and temperature), using Canadian Association of Petroleum Producers, Azizi, Behbahani and Isazadeh, Dranchuk- Purvis- Robinson, Dranchuk-Abu-Kassem and Standing- Katz methods. The correlations are based on the equation of state are often implicit because they require iteration. Many correlations have been derived to enhance simplicity; however, no correlation has been developed for the entire range of pseudo-reduced pressures and temperatures. Azizi, Behbahani and Isazadeh’s method was found to have the biggest error as a result obtained for T=20° C, and p=20 bar is no longer in the field of applicability.


2020 ◽  
Vol 32 (7) ◽  
pp. 073602
Author(s):  
Furkan Kodakoglu ◽  
V’yacheslav Akkerman

Sign in / Sign up

Export Citation Format

Share Document