scholarly journals Elliptical Tracks: Evidence for Superluminal Electrons?

Author(s):  
Keith Fredericks

In the literature of Low-Energy Nuclear Reactions (LENR), particle tracks in photographic emulsions (and other materials) associated with certain electrical discharges have been reported. Some Russian and French researchers have considered these particles to be magnetic monopoles. These tracks correspond directly to tracks created with a simple uniform exposure to photons without an electrical discharge source. This simpler method of producing tracks supports a comprehensive exploration of particle track properties. Out of 750 exposures with this method, elliptical particle tracks were detected, 22 of which were compared to Bohr-Sommerfeld electron orbits. Ellipses fitted to the tracks were found to have quantized semi-major axis sizes with ratios of ≈n2/α2 to corresponding Bohr-Sommerfeld hydrogen ellipses. This prompts inquiry relevant to magnetic monopoles due to the n2/α2 force difference between magnetic charge and electric charge using the Schwinger quantization condition. A model using analogy with the electron indicates that the elliptical tracks could be created by a bound magnetically charged particle with mass mm = 1.45 × 10-3 eV/c2, yet with superluminal velocities. Using a modified extended relativity model, mm becomes the relativistic mass of a superluminal electron, with m0 = 5.11 × 10-3 eV/c2, the fine structure constant becomes a mass ratio and charge quantization is the result of two states of the electron.

Author(s):  
Keith Fredericks

In the literature of Low-Energy Nuclear Reactions (LENR), particle tracks in photographic emulsions (and other materials) associated with certain electrical discharges have been reported. Some Russian and French researchers have considered these particles to be magnetic monopoles. These tracks correspond directly to tracks created with a simple uniform exposure to photons without an electrical discharge source. This simpler method of producing tracks supports a comprehensive exploration of particle track properties. Out of 750 exposures with this method, elliptical particle tracks were detected, 22 of which were compared to Bohr-Sommerfeld electron orbits. Ellipses fitted to the tracks were found to have quantized semi-major axis sizes with ratios of ≈n2/α2 to corresponding Bohr-Sommerfeld hydrogen ellipses. This prompts inquiry relevant to magnetic monopoles due to the n2/α2 force difference between magnetic charge and electric charge using the Schwinger quantization condition. A model using analogy with the electron indicates that the elliptical tracks could be created by a bound magnetically charged particle with mass mm = 1.45 × 10-3 eV/c2, yet with superluminal velocities. Using a modified extended relativity model, mm becomes the relativistic mass of a superluminal electron, with m0 = 5.11 × 10-3 eV/c2, the fine structure constant becomes a mass ratio and charge quantization is the result of two states of the electron.


Author(s):  
Keith A. Fredericks

Based on detection of elliptical particle tracks, $\simeq 137^2 n^2$ bigger than Bohr-Sommerfeld electron orbits, indicating the possible detection of superluminal electrons masquerading as magnetic monopoles, new relations become accessible leading to: (i) a new set of seven elementary lengths; (ii) replacement of the usual motion (Lorentz) transformations by scale transformations between $v^2<c^2$ and $v^2>c^2$ frames; (iii) equivalence of charge between $v^2<c^2$ and $v^2>c^2$ frames based on the Dirac-Schwinger quantization condition; (iv) a relativistic foundation for the Dirac-Schwinger quantization condition; (v) a possible cause of charge quantization; and (vi) the prospect of symmetry in Maxwell's equations. If the elliptical particle tracks are viewed as a magnification of electron orbits, the effect is suggestive of a spacetime distortion such as those predicted in general relativistic theories.


Author(s):  
Keith A. Fredericks

Based on detection of elliptic particle tracks, $\simeq 137^2 n^2$ bigger than Bohr-Sommerfeld electron orbits, indicating the possible detection of superluminal electrons masquerading as magnetic monopoles, a new structure emerges leading to: (i) a new set of seven elementary lengths; (ii) replacement of the usual motion (Lorentz) transformations by scale transformations between $v^2<c^2$ and $v^2>c^2$ frames; (iii) equivalence of charge between $v^2<c^2$ and $v^2>c^2$ frames based on the Dirac-Schwinger quantization condition; (iv) a relativistic foundation for the Dirac-Schwinger quantization condition; (v) a possible cause of charge quantization; and (vi) the prospect of symmetry in Maxwell's equations. If the elliptic particle tracks are viewed as a magnification of electron orbits, the effect is suggestive of a spacetime distortion such as those predicted in general relativistic theories.


Universe ◽  
2018 ◽  
Vol 4 (11) ◽  
pp. 117 ◽  
Author(s):  
Vicente Vento

Magnetic monopoles have been a subject of interest since Dirac established the relationship between the existence of monopoles and charge quantization. The Dirac quantization condition bestows the monopole with a huge magnetic charge. The aim of this study was to determine whether this huge magnetic charge allows monopoles to be detected by the scattering of charged ions and protons on matter where they might be bound. We also analyze if this charge favors monopolium (monopole–antimonopole) annihilation into many photons over two photon decays.


1992 ◽  
Vol 07 (19) ◽  
pp. 4693-4705 ◽  
Author(s):  
H. KLEINERT

We point out that electromagnetism with Dirac magnetic monopoles harbors an extra local gauge invariance called monopole gauge invariance. The gauge transformations act on a gauge field of monopoles [Formula: see text] and are independent of the ordinary electromagnetic gauge invariance. The extra invariance expresses the physical irrelevance of the shape of the Dirac strings attached to the monopoles. The independent nature of the new gauge symmetry is illustrated by comparison with two other systems, superfluids and solids, which are not gauge-invariant from the outset but which nevertheless possess a precise analog of the monopole gauge invariance in their vortex and defect structure, respectively. The extra monopole gauge invariance is shown to be responsible for the Dirac charge quantization condition 2eg/ħc=integer, which can now be proved for any fixed particle orbits, i.e. without invoking fluctuating orbits which would correspond to the standard derivation using Schrödinger wave functions. The only place where quantum physics enters in our theory is by admitting the action to jump by 2πħ×integer without physical consequences when moving the string at fixed particle orbits.


2021 ◽  
Author(s):  
M. Ivantsov

Abstract As part of the well-known task about a motion of charged particle in central forces field, a certain parallelism for electronic distribution between the atomic and subatomic ''orbits'' can be established.In this conjuncture the ground state of muonium atom as in transition electron-nuclear structure is highlighted. Moreover, there is specifically nuclear solution of fine-structure constant which with a hyper-fine structure, like of the Lamb shift of hydrogen atom, is unambiguously associated.Such a special approach, in the terms of electric interaction, may serve as an extension to the existing meson-boson classification.In particular, some idea about a versatility of the Higgs mechanism in nuclear reactions put forward for consideration here.But it would be just spatial abstraction, where subatomic matter expands as into infinity. And what would be beyond the edge of the universe?


1986 ◽  
Vol 114 ◽  
pp. 19-34 ◽  
Author(s):  
L. P. Grishchuk ◽  
S. M. Kopejkin

We have derived in an explicit form the equations of motion for two spherically-symmetric non rotating bodies in the slow motion approximation. The equations include relativistic corrections of order (v/c)2, (v/c)4 and (v/c)5 to the newtonian equations of motion. It is shown that the equations depend on the only parameter characterizing each body, namely on its relativistic mass, regardless of its internal structure and degree of compactness. This means that the equations can also be applied to bodies with a strong internal gravity, such as neutron stars and black holes. It is shown that in the (v/c)2 and (v/c)4 approximations the equations can be derived from a Lagrangian. The Lagrangian is given in an exact form. The integration of the equations of motion is performed by the method of osculating elements. The formulae for secular change of the semi-major axis and eccentricity coincide precisely with the standard ones whose derivation is based on a calculation of the energy flux in the outgoing gravitational waves.


Sign in / Sign up

Export Citation Format

Share Document