scholarly journals The Interacting Head Motif Structure does not Explain the X-Ray Diffraction Patterns from Relaxed Vertebrate Skeletal and Insect Flight Muscles

Author(s):  
Carlo Knupp ◽  
Edward Morris ◽  
John M. Squire

Unlike electron microscopy, which can achieve very high resolutions, but to date can only be used to study static structures, time-resolved X-ray diffraction from contracting muscles can, in principle, be used to follow the molecular movements involved in force generation on a millisecond timescale albeit at moderate resolution. However, previous X-ray diffraction studies of resting muscles have come up with structures for the head arrangements in resting myosin filaments that are different from the apparently ubiquitous interacting heads motif (IHM) found by single particle analysis of electron micrographs of isolated myosin filaments from a variety of muscle types. This head organization is supposed to represent the super-relaxed state of the myosin filaments where ATP usage is minimized. Here we have tested whether the interacting heads motif structures will satisfactorily explain the observed low-angle X-ray diffraction patterns from resting vertebrate (bony fish) and invertebrate (insect flight) muscles. We find that the interacting heads motif does not, in fact, explain what is observed. Previous X-ray models fit the observations much better. We conclude that the X-ray diffraction evidence has been well interpreted in the past and that there is more than one ordered myosin head state in resting muscle. There is, therefore, no reason to question some of the previous X-ray diffraction results on myosin filaments; time-resolved X-ray diffraction should be a reliable way to follow crossbridge action in active muscle and may be one of the few ways to follow molecular changes in myosin heads on a millisecond timescale as force is actually produced.

Biology ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 67 ◽  
Author(s):  
Knupp ◽  
Morris ◽  
Squire

Unlike electron microscopy, which can achieve very high resolution but to date can only be used to study static structures, time-resolved X-ray diffraction from contracting muscles can, in principle, be used to follow the molecular movements involved in force generation on a millisecond timescale, albeit at moderate resolution. However, previous X-ray diffraction studies of resting muscles have come up with structures for the head arrangements in resting myosin filaments that are different from the apparently ubiquitous interacting head motif (IHM) structures found by single particle analysis of electron micrographs of isolated myosin filaments from a variety of muscle types. This head organization is supposed to represent the super-relaxed state of the myosin filaments where adenosine triphosphate (ATP) usage is minimized. Here we have tested whether the interacting head motif structures will satisfactorily explain the observed low-angle X-ray diffraction patterns from resting vertebrate (bony fish) and invertebrate (insect flight) muscles. We find that the interacting head motif does not, in fact, explain what is observed. Previous X-ray models fit the observations much better. We conclude that the X-ray diffraction evidence has been well interpreted in the past and that there is more than one ordered myosin head state in resting muscle. There is, therefore, no reason to question some of the previous X-ray diffraction results on myosin filaments; time-resolved X-ray diffraction should be a reliable way to follow crossbridge action in active muscle and may be one of the few ways to visualise the molecular changes in myosin heads on a millisecond timescale as force is actually produced.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 990
Author(s):  
Fatemeh Nikkhou ◽  
Fang Xia ◽  
Xizhi Yao ◽  
Idowu A. Adegoke ◽  
Qinfen Gu ◽  
...  

A flow-through reaction cell has been developed for studying minerals leaching by in-situ time-resolved powder X-ray diffraction, allowing for a better understanding of the leaching mechanisms and kinetics. The cell has the capability of independent control of temperature (up to 95 °C) and flow rate (>0.5 mL min−1) for atmospheric pressure leaching. It was successfully tested at the powder diffraction beamline at the Australian Synchrotron. Galena powder was leached in a citrate solution under flow-through condition at a flow rate of 0.5 mL min−1, while diffraction patterns were collected during the entire leaching process, showing rapid galena dissolution without the formation of secondary mineral phases. The flow-through cell can be used to study leaching processes of other ore minerals.


2014 ◽  
Vol 369 (1647) ◽  
pp. 20130325 ◽  
Author(s):  
John C. H. Spence ◽  
Nadia A. Zatsepin ◽  
Chufeng Li

The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved crystallography, normally achieved by Laue (polychromatic) diffraction, for which the monochromatic laser radiation of a free-electron X-ray laser is unsuitable. We discuss the possibility of obtaining single-shot, angle-integrated rocking curves from CCB patterns, and the dependence of the resulting patterns on the focused beam coordinate when the beam diameter is larger or smaller than a nanocrystal, or smaller than one unit cell. We show how structure factor phase information is provided at overlapping interfering orders and how a common phase origin between different shots may be obtained. Their use in refinement of the phase-sensitive intensity between overlapping orders is suggested.


1975 ◽  
Vol 15 (7) ◽  
pp. 687-705 ◽  
Author(s):  
R.S. Goody ◽  
K.C. Holmes ◽  
H.G. Mannherz ◽  
J.B. Leigh ◽  
G. Rosenbaum

2001 ◽  
Vol 19 (1) ◽  
pp. 125-131 ◽  
Author(s):  
KENICHI KINOSHITA ◽  
HIDEKI HARANO ◽  
KOJI YOSHII ◽  
TAKERU OHKUBO ◽  
ATSUSHI FUKASAWA ◽  
...  

For ultrafast material analyses, we constructed the time-resolved X-ray diffraction system utilizing ultrashort X-rays from laser-produced plasma generated by the 12-TW–50-fs laser at the Nuclear Engineering Research Laboratory. Ultrafast transient changes in laser-irradiated GaAs crystals were observed as X-ray diffraction patterns. Experimental results were compared with numerical analyses.


2010 ◽  
Vol 108 (1) ◽  
pp. 120-125 ◽  
Author(s):  
Robert J. Perz-Edwards ◽  
Thomas C. Irving ◽  
Bruce A. J. Baumann ◽  
David Gore ◽  
Daniel C. Hutchinson ◽  
...  

Stretch activation is important in the mechanical properties of vertebrate cardiac muscle and essential to the flight muscles of most insects. Despite decades of investigation, the underlying molecular mechanism of stretch activation is unknown. We investigated the role of recently observed connections between myosin and troponin, called “troponin bridges,” by analyzing real-time X-ray diffraction “movies” from sinusoidally stretch-activated Lethocerus muscles. Observed changes in X-ray reflections arising from myosin heads, actin filaments, troponin, and tropomyosin were consistent with the hypothesis that troponin bridges are the key agent of mechanical signal transduction. The time-resolved sequence of molecular changes suggests a mechanism for stretch activation, in which troponin bridges mechanically tug tropomyosin aside to relieve tropomyosin’s steric blocking of myosin–actin binding. This enables subsequent force production, with cross-bridge targeting further enhanced by stretch-induced lattice compression and thick-filament twisting. Similar linkages may operate in other muscle systems, such as mammalian cardiac muscle, where stretch activation is thought to aid in cardiac ejection.


2004 ◽  
Vol 22 (3) ◽  
pp. 285-288 ◽  
Author(s):  
KAZUTAKA G. NAKAMURA ◽  
YOICHIRO HIRONAKA ◽  
HIDETAKA KAWANO ◽  
HIROAKI KISHIMURA ◽  
KEN-ICHI KONDO

Ultrashort pulsed hard X rays are generated by focusing an intense femtosecond laser beam onto metal targets. Kαemissions are obtained from a Cu target. Picosecond time-resolved X-ray diffraction is performed to investigate structural dynamics of laser-shocked semiconductors using the laser plasma X-ray pulses. Lattice deformation associated with shock-wave propagation is directly observed. Evolution of strain profiles inside the crystal is determined without disturbance from the time-resolved X-ray diffraction patterns.


2014 ◽  
Vol 91 ◽  
pp. 1-6
Author(s):  
Yu.M. Mikhailov ◽  
V.V. Aleshin ◽  
A.M. Kolesnikova ◽  
D.Yu. Kovalev ◽  
V.I. Ponomarev

The combustion of cellulose nitrate (NC) in ballasted mixtures containing an organic binder and nickel hydroxycarbonate (NiOHCO3) or silver carbonate (Ag2CO3) as precursors has been found to produce Ni or Ag nanoparticles. Formation of Ni and Ag nanoparticles in the wave of flameless combustion of NC was monitored by the time-resolved X-Ray diffraction (TRXRD) method. During the formation of the Ag nanoparticles, the diffraction patterns exhibited only signals from decreasing amounts of the precursor and newly simultaneously formed 20-30 nm silver particles. It has been detected that in the systems with NiOHCO3the formation of the Ni 5-10 nm crystals proceeded via some 2-3 seconds diffraction-silent intermediate state of the whole system.


Sign in / Sign up

Export Citation Format

Share Document