scholarly journals Electrospun Core-Shell Nanofiber as Separator for Lithium-Ion Batteries with High Performance and Improved Safety

Author(s):  
Yun Zhao ◽  
Yanxi Li ◽  
Zheng Liang

Though the energy density of lithium-ion batteries continues to increase, safety issues related with the internal short-circuit and the resulting combustion of highly flammable electrolyte impede the further development of lithium-ion batteries. It has been well-accepted that a thermal stable separator is important to postpone the entire battery short-circuit and thermal-runaway. Traditional methods to improve the thermal stability of separators includes surface modification and/or developing alternate material systems for separators which may always affect the battery performance negatively. Herein, a thermostable and shrink-free separator with little compromise in battery performance is prepared by coaxial electrospinning and tested. The separator consists of core-shell fiber networks where poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) layer serves as shell and polyacrylonitrile (PAN) as the core. This core-shell fiber network exhibits little or even no shrinking/melting at elevated temperature over 250 °C. Meanwhile, it shows excellent electrolyte wettability and can take large amount of liquid electrolyte three times more than that of conventional Celgard 2400 separator. In addition, the half-cell using LiNi1/3Co1/3Mn1/3O2 as cathode and the aforementioned electrospun core-shell fiber network as separator demonstrates superior electrochemical behavior, stably cycling for 200 cycles at 1 C with a reversible capacity of 130 mAh g-1 and little capacity decay.

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3391 ◽  
Author(s):  
Zheng Liang ◽  
Yun Zhao ◽  
Yanxi Li

Though the energy density of lithium-ion batteries continues to increase, safety issues related to the internal short circuit and the resulting combustion of highly flammable electrolytes impede the further development of lithium-ion batteries. It has been well-accepted that a thermal stable separator is important to postpone the entire battery short circuit and thermal runaway. Traditional methods to improve the thermal stability of separators include surface modification and/or developing alternate material systems for separators, which may affect the battery performance negatively. Herein, a thermostable and shrink-free separator with little compromise in battery performance was prepared by coaxial electrospinning and tested. The separator consisted of core-shell fiber networks where poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) layer served as shell and polyacrylonitrile (PAN) as the core. This core-shell fiber network exhibited little or even no shrinking/melting at elevated temperature over 250 °C. Meanwhile, it showed excellent electrolyte wettability and could take large amounts of liquid electrolyte, three times more than that of conventional Celgard 2400 separator. In addition, the half-cell using LiNi1/3Co1/3Mn1/3O2 as cathode and the aforementioned electrospun core-shell fiber network as separator demonstrated superior electrochemical behavior, stably cycling for 200 cycles at 1 C with a reversible capacity of 130 mA·h·g−1 and little capacity decay.


RSC Advances ◽  
2015 ◽  
Vol 5 (77) ◽  
pp. 63012-63016 ◽  
Author(s):  
Yourong Wang ◽  
Wei Zhou ◽  
Liping Zhang ◽  
Guangsen Song ◽  
Siqing Cheng

A SiO2@NiO core–shell electrode exhibits almost 100% coulombic efficiency, excellent cycling stability and rate capability after the first few cycles.


Nanoscale ◽  
2013 ◽  
Vol 5 (17) ◽  
pp. 7906 ◽  
Author(s):  
Qin-qin Xiong ◽  
Jiang-ping Tu ◽  
Xin-hui Xia ◽  
Xu-yang Zhao ◽  
Chang-dong Gu ◽  
...  

2021 ◽  
Author(s):  
Bitao Su ◽  
Ming Zhong ◽  
Lingling Li ◽  
Kun Zhao ◽  
Hui Peng ◽  
...  

Searching for novel alternatives to traditional graphite anode for high performance lithium-ion batteries is of great significance, which, however, faces many challenges. In this work, a pyrolysis coupled with selenization...


Sign in / Sign up

Export Citation Format

Share Document