scholarly journals Effect of Quintessential and Magnetic Field on GUP Modified Hawking Radiation

Author(s):  
Rimsha Babar ◽  
Wajiha Javed ◽  
Ali Övgün

In this paper, we investigate the Hawking radiation process by using the quantum tunneling phenomenon of massive spin-1 (W-bosons) and spin-0 particles from (2+1) dimensional Black Hoke with quintessential and magnetic field. For this purpose, using Hamilton-Jacobi ansatz, we apply the WKB approximation to the field equations of massive charged vector particles. We get the required tunneling rate of radiated particles and obtain their corresponding Hawking temperature $T_h$. In order to study the quantum gravity effects, we utilize the generalized Proca and Klein-Gordan equations incorporating the generalized uncertainty principle (GUP) and recover the accompanying quantum corrected temperature $T'_{h}$.

2020 ◽  
Vol 35 (13) ◽  
pp. 2050104 ◽  
Author(s):  
R. Babar ◽  
W. Javed ◽  
A. Övgün

In this paper, we investigate the Hawking radiation process by using the quantum tunneling phenomenon of massive spin-1 (W-bosons) and spin-0 particles by the black hole in 2 + 1 dimensions surrounded by quintessence as well as charged BTZ-like magnetic black hole. First of all, by using Hamilton–Jacobi ansatz and WKB approximation to the field equation of massive vector particles, we get the required tunneling rate of emitted particles and obtain the corresponding Hawking temperature [Formula: see text] for the black hole (BH) surrounded by quintessence. In order to study the quantum gravity effects, we utilize the generalized Proca and Klein–Gordan equations incorporating the generalized uncertainty principle (GUP) for these BHs and recover their modified tunneling probability as well as accompanying quantum corrected temperatures [Formula: see text].


2019 ◽  
Vol 97 (2) ◽  
pp. 176-186 ◽  
Author(s):  
Wajiha Javed ◽  
Riasat Ali ◽  
G. Abbas

In this paper, we have investigated the Hawking radiation process as a semiclassical quantum tunneling phenomenon from black ring and 5D Myers–Perry black holes. Using Lagrangian of Glashow–Weinberg–Salam model with background electromagnetic field (for charged W-bosons) and the Wentzel–Kramers–Brillouin approximation, we have evaluated the tunneling rate or probability of charged vector particles at through the horizons by taking into account the electromagnetic vector potential. Moreover, we have calculated the corresponding Hawking temperature via Boltzmann factor for both types of considered background and analyzed the whole spectrum generally.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950102
Author(s):  
Muhammad Rizwan ◽  
Khalil Ur Rehman

By considering the quantum gravity effects based on generalized uncertainty principle, we give a correction to Hawking radiation of charged fermions from accelerating and rotating black holes. Using Hamilton–Jacobi approach, we calculate the corrected tunneling probability and the Hawking temperature. The quantum corrected Hawking temperature depends on the black hole parameters as well as quantum number of emitted particles. It is also seen that a remnant is formed during the black hole evaporation. In addition, the corrected temperature is independent of an angle [Formula: see text] which contradicts the claim made in the literature.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Ali Övgün ◽  
Wajiha Javed ◽  
Riasat Ali

Using the semiclassical WKB approximation and Hamilton-Jacobi method, we solve an equation of motion for the Glashow-Weinberg-Salam model, which is important for understanding the unified gauge-theory of weak and electromagnetic interactions. We calculate the tunneling rate of the massive charged W-bosons in a background of electromagnetic field to investigate the Hawking temperature of black holes surrounded by perfect fluid in Rastall theory. Then, we study the quantum gravity effects on the generalized Proca equation with generalized uncertainty principle (GUP) on this background. We show that quantum gravity effects leave the remnants on the Hawking temperature and the Hawking radiation becomes nonthermal.


Author(s):  
B. Khosropour

In this work, according to the generalized uncertainty principle, we study the Klein–Gordon equation interacting with the electromagnetic field. The generalized Klein–Gordon equation is obtained in the presence of a scalar electric potential and a uniform magnetic field. Furthermore, we find the relation of the generalized energy–momentum in the presence of a scalar electric potential and a uniform magnetic field separately.


2020 ◽  
Vol 98 (8) ◽  
pp. 801-809
Author(s):  
S. Hamid Mehdipour

We present a general procedure for constructing exact black hole (BH) solutions with a magnetic charge in the context of nonlinear electrodynamics (NED) theory as well as in the coherent state approach to noncommutative geometry (NCG). In this framework, the Lagrangian density for a noncommutative Hayward BH is obtained and the weak energy condition is satisfied. The noncommutative Hayward solution depends on two kind of charges, without which the Schwarzschild solution is applicable. Moreover, to find a link between the BH evaporation and uncertainty relations, we may calculate the Hawking temperature and find the effect of the Lagrangian density of BHs on the Hawking radiation. Therefore, a generalized uncertainty principle (GUP) emerges from the modified Hawking temperature in Einstein–NED theory. The origin of this GUP is the combined influence of a nonlinear magnetic source and an intrinsic property of the manifold associated with a fictitious charge. Finally, we find that there is an upper bound on the Lagrangian uncertainty of the BHs that is caused by the NED field and (or) the fictitious charge.


Sign in / Sign up

Export Citation Format

Share Document