scholarly journals Improving Quality-of-Service in LoRa Low-Power Wide-Area Networks through Optimized Radio Resource Management

Author(s):  
Eduardo Sallum ◽  
Nuno Pereira ◽  
Mario Alves ◽  
Max Mauro Santos

Low Power Wide Area Networks (LPWAN) enable a growing number of Internet-of-Things (IoT) applications with large geographical coverage, low bit-rate, and long lifetime requirements. LoRa (Long Range) is a well-known LPWAN technology that uses a proprietary Chirp Spread Spectrum (CSS) physical layer, while the upper layers are defined by an open standard - LoRaWAN. In this paper, we propose a simple yet effective method to improve the Quality-of-Service (QoS) of LoRa networks by fine-tuning specific radio parameters. Through a Mixed Integer Linear Programming (MILP) problem formulation, we find optimal settings for the Spreading Factor (SF) and Carrier Frequency (CF) radio parameters, considering the network traffic specifications as a whole, to improve the Data Extraction Rate (DER) and to reduce the packet collision rate and the energy consumption in LoRa networks. The effectiveness of the optimization procedure is demonstrated by simulations, using LoRaSim for different network scales. In relation to the traditional LoRa radio parameter assignment policies, our solution leads to an average increase of 6% in DER, and a number of collisions 13 times smaller. In comparison to networks with dynamic radio parameter assignment policies, there is an increase of 5%, 2.8%, and 2% of DER, and a number of collisions 11, 7.8 and 2.5 times smaller than equal-distribution, Tiurlikova's (SoTa), and random distribution, respectively. Regarding the network energy consumption metric, the proposed optimization obtained an average consumption similar to Tiurlikova's, and 2.8 times lower than the equal-distribution and random dynamic allocation policies. Furthermore, we approach the practical aspects of how to implement and integrate the optimization mechanism proposed in LoRa, guaranteeing backward compatibility with the standard protocol.

Author(s):  
Eduardo Sallum ◽  
Nuno Pereira ◽  
Mário Alves ◽  
Max Santos

Low Power Wide Area Networks (LPWAN) enable a growing number of Internet-of-Things (IoT) applications with large geographical coverage, low bit-rate and long lifetime requirements. LoRa (Long Range) is a well-known LPWAN technology which uses a proprietary Chirp Spread Spectrum (CSS) physical layer, while the upper layers are defined by an open standard - LoRaWAN. In this paper, we propose a simple yet effective method to improve the Quality-of-Service (QoS) of LoRa networks by fine-tuning specific radio parameters. Through a Mixed Integer Linear Programming (MILP) problem formulation, we find optimal settings for the Spreading Factor (SF) and Carrier Frequency (CF) radio parameters, considering the network traffic specifications as a whole, to improve the Data Extraction Rate (DER) and to reduce the packet collision rate and the energy consumption in LoRa networks. The effectiveness of the optimization procedure is demonstrated by simulations, considering realistic scenarios. In relation to the traditional LoRa radio parameter assignment policies, our solution leads to an average increase of 30% in DER, and a number of collisions 17 times smaller. In comparison to networks with dynamic radio parameter assignment policies, there is an increase of 10.5% and 4% of DER, and a number of collisions 13.5 and 7.5 times smaller than equal-distribution and random distribution, respectively. Regarding the network energy consumption metric, the proposed optimization obtained an average consumption 3.6 and 2.74 times lower than the equal-distribution and random dynamic allocation policies, respectively. Furthermore, we approach the practical aspects on how to implement and integrate the optimization mechanism proposed in LoRa, guaranteeing backward compatibility with the standard protocol.


2020 ◽  
Vol 9 (1) ◽  
pp. 10 ◽  
Author(s):  
Eduardo Sallum ◽  
Nuno Pereira ◽  
Mário Alves ◽  
Max Santos

Low Power Wide Area Networks (LPWAN) enable a growing number of Internet-of-Things (IoT) applications with large geographical coverage, low bit-rate, and long lifetime requirements. LoRa (Long Range) is a well-known LPWAN technology that uses a proprietary Chirp Spread Spectrum (CSS) physical layer, while the upper layers are defined by an open standard—LoRaWAN. In this paper, we propose a simple yet effective method to improve the Quality-of-Service (QoS) of LoRaWAN networks by fine-tuning specific radio parameters. Through a Mixed Integer Linear Programming (MILP) problem formulation, we find optimal settings for the Spreading Factor (SF) and Carrier Frequency (CF) radio parameters, considering the network traffic specifications as a whole, to improve the Data Extraction Rate (DER) and to reduce the packet collision rate and the energy consumption in LoRa networks. The effectiveness of the optimization procedure is demonstrated by simulations, using LoRaSim for different network scales. In relation to the traditional LoRa radio parameter assignment policies, our solution leads to an average increase of 6% in DER, and a number of collisions 13 times smaller. In comparison to networks with dynamic radio parameter assignment policies, there is an increase of 5%, 2.8%, and 2% of DER, and a number of collisions 11, 7.8 and 2.5 times smaller than equal-distribution, Tiurlikova’s (SOTA), and random distribution, respectively. Regarding the network energy consumption metric, the proposed optimization obtained an average consumption similar to Tiurlikova’s, and 2.8 times lower than the equal-distribution and random dynamic allocation policies. Furthermore, we approach the practical aspects of how to implement and integrate the optimization mechanism proposed in LoRa, guaranteeing backward compatibility with the standard protocol.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4053 ◽  
Author(s):  
Andrea Petroni ◽  
Francesca Cuomo ◽  
Leonisio Schepis ◽  
Mauro Biagi ◽  
Marco Listanti ◽  
...  

The Internet of Things (IoT) is by now very close to be realized, leading the world towards a new technological era where people’s lives and habits will be definitively revolutionized. Furthermore, the incoming 5G technology promises significant enhancements concerning the Quality of Service (QoS) in mobile communications. Having billions of devices simultaneously connected has opened new challenges about network management and data exchange rules that need to be tailored to the characteristics of the considered scenario. A large part of the IoT market is pointing to Low-Power Wide-Area Networks (LPWANs) representing the infrastructure for several applications having energy saving as a mandatory goal besides other aspects of QoS. In this context, we propose a low-power IoT-oriented file synchronization protocol that, by dynamically optimizing the amount of data to be transferred, limits the device level of interaction within the network, therefore extending the battery life. This protocol can be adopted with different Layer 2 technologies and provides energy savings at the IoT device level that can be exploited by different applications.


Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 164
Author(s):  
Mukarram A. M. Almuhaya ◽  
Waheb A. Jabbar ◽  
Noorazliza Sulaiman ◽  
Suliman Abdulmalek

Low-power wide-area network (LPWAN) technologies play a pivotal role in IoT applications, owing to their capability to meet the key IoT requirements (e.g., long range, low cost, small data volumes, massive device number, and low energy consumption). Between all obtainable LPWAN technologies, long-range wide-area network (LoRaWAN) technology has attracted much interest from both industry and academia due to networking autonomous architecture and an open standard specification. This paper presents a comparative review of five selected driving LPWAN technologies, including NB-IoT, SigFox, Telensa, Ingenu (RPMA), and LoRa/LoRaWAN. The comparison shows that LoRa/LoRaWAN and SigFox surpass other technologies in terms of device lifetime, network capacity, adaptive data rate, and cost. In contrast, NB-IoT technology excels in latency and quality of service. Furthermore, we present a technical overview of LoRa/LoRaWAN technology by considering its main features, opportunities, and open issues. We also compare the most important simulation tools for investigating and analyzing LoRa/LoRaWAN network performance that has been developed recently. Then, we introduce a comparative evaluation of LoRa simulators to highlight their features. Furthermore, we classify the recent efforts to improve LoRa/LoRaWAN performance in terms of energy consumption, pure data extraction rate, network scalability, network coverage, quality of service, and security. Finally, although we focus more on LoRa/LoRaWAN issues and solutions, we introduce guidance and directions for future research on LPWAN technologies.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Mohammed Zaki Hasan ◽  
Tat-Chee Wan

Multimedia sensor networks for real-time applications have strict constraints on delay, packet loss, and energy consumption requirements. For example, video streaming in a disaster-management scenario requires careful handling to ensure that the end-to-end delay is within the acceptable range and the video is received properly without any distortion. The failure to transmit a video stream effectively occurs for many reasons, including sensor function limitations, excessive power consumption, and a lack of routing reliability. We propose a novel mathematical model for quality of service (QoS) route determination that enables a sensor to determine the optimal path for minimising resource use while satisfying the required QoS constraints. The proposed mathematical model uses the Lagrangian relaxation mixed integer programming technique to define critical parameters and appropriate objective functions for controlling the adaptive QoS constrained route discovery process. Performance trade-offs between QoS requirements and energy efficiency were simulated using the LINGO mathematical programming language. The proposed approach significantly improves the network lifetime, while reducing energy consumption and decreasing average end-to-end delays within the sensor network via optimised resource sharing in intermediate nodes compared with existing routing algorithms.


2020 ◽  
Vol 13 (4) ◽  
pp. 268-280
Author(s):  
Istvan Drotar ◽  
Balazs Lukacs ◽  
Miklós Kuczmann

There are several types of wireless IoT (Internet of Things) networks based on the connection distance between two communicating devices. For covering wide areas, LPWAN (Low Power Wide Area) networks can provide a good solution. These networks provide big coverage and low power consumption. One of the most popular LPWAN network is LoRaWAN (Long Range Wide Area Network). LoRaWAN networks are ideal for sending infrequent, small messages through long distances. In this article the network’s capacity, coverage and energy consumption have been tested. These are the most important attributes when designing a LoRaWAN network, so it can satisfy the requirements of LPWAN networks.


Sign in / Sign up

Export Citation Format

Share Document