scholarly journals A Tri-band Low-noise Cryogenic Receiver for Geodetic VLBI Observations with VGOS Radio Telescopes

Author(s):  
José A. López-Pérez ◽  
Félix Tercero-Martínez ◽  
José M. Serna-Puente ◽  
Beatriz Vaquero-Jiménez ◽  
María Patino-Esteban ◽  
...  

This paper shows the development of a simultaneous tri-band (S: 2.2 - 2.7 GHz, X: 7.5 - 9 GHz and Ka: 28 - 33 GHz) low-noise cryogenic receiver for geodetic Very Long Baseline Interferometry (geo-VLBI) which has been developed by the technical staff of Yebes Observatory (IGN) laboratories in Spain. The receiver was installed in the first radio telescope of the Red Atlántica de Estaciones Geodinámicas y Espaciales (RAEGE) project, which is located in Yebes Observatory, in the frame of the VLBI Global Observing System (VGOS). After this, the receiver was borrowed by the Norwegian Mapping Autorithy (NMA) for the commissioning of two VGOS radiotelescopes in Svalbard (Norway). A second identical receiver was built for the Ishioka VGOS station of the Geospatial Information Authority (GSI) of Japan, and a third one for the second RAEGE VGOS station, located in Santa María (Açores Archipelago, Portugal). The average receiver noise temperatures are 21, 23 and 25 Kelvin and the measured antenna efficiencies are 70%, 75% and 60% in S-band, X-band and Ka-band, respectively.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2662
Author(s):  
José A. López-Pérez ◽  
Félix Tercero-Martínez ◽  
José M. Serna-Puente ◽  
Beatriz Vaquero-Jiménez ◽  
María Patino-Esteban ◽  
...  

This paper shows a simultaneous tri-band (S: 2.2–2.7 GHz, X: 7.5–9 GHz and Ka: 28–33 GHz) low-noise cryogenic receiver for geodetic Very Long Baseline Interferometry (geo-VLBI) which has been developed at Yebes Observatory laboratories in Spain. A special feature is that the whole receiver front-end is fully coolable down to cryogenic temperatures to minimize receiver noise. It was installed in the first radio telescope of the Red Atlántica de Estaciones Geodinámicas y Espaciales (RAEGE) project, which is located in Yebes Observatory, in the frame of the VLBI Global Observing System (VGOS). After this, the receiver was borrowed by the Norwegian Mapping Autorithy (NMA) for the commissioning of two VGOS radiotelescopes in Svalbard (Norway). A second identical receiver was built for the Ishioka VGOS station of the Geospatial Information Authority (GSI) of Japan, and a third one for the second RAEGE VGOS station, located in Santa María (Açores Archipelago, Portugal). The average receiver noise temperatures are 21, 23, and 25 Kelvin and the measured antenna efficiencies are 70%, 75%, and 60% in S-band, X-band, and Ka-band, respectively.


2020 ◽  
Author(s):  
Dirk Behrend ◽  
Axel Nothnagel ◽  
Johannes Böhm ◽  
Chet Ruszczyk ◽  
Pedro Elosegui

<p>The International VLBI Service for Geodesy and Astrometry (IVS) is a globally operating service that coordinates and performs Very Long Baseline Interferometry (VLBI) activities through its constituent components. The VLBI activities are associated with the creation, provision, dissemination, and archiving of relevant VLBI data and products. The operational station network of the IVS currently consists of about 40 radio telescopes worldwide, subsets of which participate in regular 24-hour and 1-hour observing sessions. This legacy S/X observing network dates back in large part to the 1970s and 1980s. Because of highly demanding new scientific requirements such as sea-level change but also due to the aging infrastructure, the larger IVS community planned and started to implement a new VLBI system called VGOS (VLBI Global Observing System) at existing and new sites over the past several years. In 2020, a fledgling network of 8 VGOS stations started to observe in operational IVS sessions. We anticipate that the VGOS network will grow over the next couple of years to a global network of 25 stations and will eventually replace the legacy S/X system as the IVS production system. We will provide an overview of the recent developments and anticipated evolution of the geodetic VLBI station infrastructure.</p>


1988 ◽  
Vol 129 ◽  
pp. 457-458 ◽  
Author(s):  
R. P. Linfield ◽  
G. S. Levy ◽  
J. S. Ulvestad ◽  
C. D. Edwards ◽  
J. F. Jordan ◽  
...  

An antenna in geostationary orbit was used for VLBI observations at 2.3 GHz, in combination with ground antennas in Australia and Japan. 23 of the 25 observed sources were detected on orbiter-ground baselines, with baseline lengths as large as 2.15 earth diameters. Brightness temperatures between 1012 K and 4 × 1012 K were measured for 10 sources.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
N. Kareinen ◽  
R. Haas

AbstractThe Onsala Space Observatory has installed a modern digital backend for geodetic and astronomical Very Long Baseline Interferometry (VLBI). This system consists of a Digital Base-Band Converter (DBBC) and a Mark 5B+ recorder. From 2011 until late 2014 this new system was run for geodetic VLBI observations in parallel with the old system consisting of a Mark 4 rack and Mark 5A recording system. Several of these observed sessions were correlated at the correlator in Bonn including both data sets. We present results from the analysis and comparison of these sessions. Both the original observed delays and corresponding geodetic parameters are compared. No significant differences are detected, for either the raw observations or for the geodetic parameters. This shows that the digital backend can be used operationally for geodetic VLBI observations.


2021 ◽  
Vol 95 (5) ◽  
Author(s):  
Eskil Varenius ◽  
Rüdiger Haas ◽  
Tobias Nilsson

AbstractWe present results from observation, correlation and analysis of interferometric measurements between the three geodetic very long baseline interferometry (VLBI) stations at the Onsala Space Observatory. In total, 25 sessions were observed in 2019 and 2020, most of them 24 h long, all using X band only. These involved the legacy VLBI station ONSALA60 and the Onsala twin telescopes, ONSA13NE and ONSA13SW, two broadband stations for the next-generation geodetic VLBI global observing system (VGOS). We used two analysis packages: $$\nu $$ ν Solve to pre-process the data and solve ambiguities, and ASCOT to solve for station positions, including modelling gravitational deformation of the radio telescopes and other significant effects. We obtained weighted root mean square post-fit residuals for each session on the order of 10–15 ps using group-delays and 2–5 ps using phase-delays. The best performance was achieved on the (rather short) baseline between the VGOS stations. As the main result of this work, we determined the coordinates of the Onsala twin telescopes in VTRF2020b with sub-millimetre precision. This new set of coordinates should be used from now on for scheduling, correlation, as a priori for data analyses, and for comparison with classical local-tie techniques. Finally, we find that positions estimated from phase-delays are offset $$\sim +3$$ ∼ + 3  mm in the up-component with respect to group-delays. Additional modelling of (elevation dependent) effects may contribute to the future understanding of this offset.


2017 ◽  
Vol 13 (S336) ◽  
pp. 201-206 ◽  
Author(s):  
Luca Moscadelli ◽  
Alberto Sanna ◽  
Ciriaco Goddi

AbstractImaging the inner few 1000 AU around massive forming stars, at typical distances of several kpc, requires angular resolutions of better than 0″.1. Very Long Baseline Interferometry (VLBI) observations of interstellar molecular masers probe scales as small as a few AU, whereas (new-generation) centimeter and millimeter interferometers allow us to map scales of the order of a few 100 AU. Combining these informations all together, it presently provides the most powerful technique to trace the complex gas motions in the proto-stellar environment. In this work, we review a few compelling examples of this technique and summarize our findings.


2002 ◽  
Vol 12 ◽  
pp. 124-125 ◽  
Author(s):  
V. Dehant ◽  
M. Feissel ◽  
O. de Viron ◽  
M. Yseboodt ◽  
Ch. Bizouard

The recent theoretical developments have provided accurate series of nutations, which are close to the Very Long Baseline Interferometry (VLBI) data. At the milliarcsecond (mas) level, three series are available: MHB2000 (Mathews et al. 2000), FG2000 (Getino and Ferrándiz 2000), and SF2000 (Shirai and Fukushima 2000a,b) (see Dehant 2000, and in this volume, for more information and for a short description of these models).In the first part of our work we have compared these models with the (VLBI) observations (Ma et al. 2000) by computing rms of the residuals for several time intervals of measurements. We have concluded that these series have comparable precision.


2019 ◽  
Vol 491 (4) ◽  
pp. 5843-5851
Author(s):  
Vladimir I Zhuravlev ◽  
Yu I Yermolaev ◽  
A S Andrianov

ABSTRACT The ionospheric scattering of pulses emitted by PSR B0950+08 is measured using the 10-mRadioAstron Space Radio Telescope, the 300-m Arecibo Radio Telescope, and the 14 x 25-m Westerbork Synthesis Radio Telescope (WSRT) at a frequency band between 316 and 332 MHz. We analyse this phenomenon based on a simulated model of the phase difference obtained between antennas that are widely separated by nearly 25 Earth diameters. We present a technique for processing and analysing the ionospheric total electron content (TEC) at the ground stations of the ground-space interferometer. This technique allows us to derive almost synchronous half-hour structures of the TEC in the ionosphere at an intercontinental distance between the Arecibo and WSRT stations. We find that the amplitude values of the detected structures are approximately twice as large as the values for the TEC derived in the international reference ionosphere (IRI) project. Furthermore, the values of the TEC outside these structures are almost the same as the corresponding values found by the IRI. According to a preliminary analysis, the detected structures were observed during a geomagnetic storm with a minimum Dst index of ∼75 nT generated by interplanetary disturbances, and may be due to the influence of interplanetary and magnetospheric phenomena on ionospheric disturbances. We show that the Space Very Long Baseline Interferometry provides us with new opportunities to study the TEC, and we demonstrate the capabilities of this instrument to research the ionosphere.


2019 ◽  
Vol 491 (3) ◽  
pp. 4069-4075 ◽  
Author(s):  
R A Burns ◽  
G Orosz ◽  
O Bayandina ◽  
G Surcis ◽  
M Olech ◽  
...  

ABSTRACT This paper reports observations of a 22 GHz water maser ‘superburst’ in the G25.65+1.05 massive star-forming region, conducted in response to an alert from the Maser Monitoring Organisation (M2O). Very long baseline interferometry (VLBI) observations using the European VLBI Network (EVN) recorded a maser flux density of 1.2 × 104 Jy. The superburst was investipgated in the spectral, structural, and temporal domains and its cause was determined to be an increase in maser path length generated by the superposition of multiple maser emitting regions aligning in the line of sight to the observer. This conclusion was based on the location of the bursting maser in the context of the star-forming region, its complex structure, and its rapid onset and decay.


2002 ◽  
Vol 206 ◽  
pp. 105-111 ◽  
Author(s):  
Vyacheslav I. Slysh ◽  
Maxim A. Voronkov ◽  
Irina E. Val'tts ◽  
Victor Migenes ◽  
K.M. Shibata ◽  
...  

We report on the first space-VLBI observations of the OH masers in two main-line OH transitions at 1665 and 1667 MHz. The observations involved the space radio telescope on board the Japanese satellite HALCA and an array of ground radio telescopes. The maps of the maser region and images of individual maser spots were produced with an angular resolution of 1 mas, which is several times higher than the angular resolution available on the ground. The maser spots were only partly resolved and a lower limit to the brightness temperature 6 × 1012 K was obtained. The masers seem to be located in the direction of low interstellar scattering.


Sign in / Sign up

Export Citation Format

Share Document