scholarly journals Speed of Light as an Emergent Property of the Fabric

2016 ◽  
Vol 8 (3) ◽  
pp. 111
Author(s):  
Dirk J. Pons ◽  
Arion D. Pons ◽  
Aiden J. Pons

<p class="1Body"><strong>Problem</strong>- The theory of Relativity is premised on the constancy of the speed of light (c) in-vacuo. While no empirical evidence convincingly shows the speed to be variable, nonetheless from a theoretical perspective the invariance is an assumption. <strong>Need-</strong> It is possible that the evidence could be explained by a different theory. <strong>Approach</strong>- A non-local hidden-variable (NLHV) solution, the Cordus particule theory, is applied to identify the causes of variability in the fabric density, and then show how this affects the speed of light. <strong>Findings</strong>- Under these assumptions the speed of light is variable (VSL), being inversely proportional to fabric density. This is because the discrete fields of the photon interact dynamically with the fabric and therefore consume frequency cycles of the photon. The fabric arises from aggregation of fields from particles, which in turn depends on the proximity and spatial distribution of matter. Results disfavour the universal applicability of the cosmological principle of homogeneity and isotropy of the universe. <strong>Originality</strong>- The work proposes causal mechanisms for VSL, which have otherwise been challenging to ascertain. Uniquely, this theory identifies fabric density as the dependent variable. In contrast, other VSL models propose that c varies with time or some geometric-like scale, but struggle to provide plausible reasons for that dependency. This theory also offers a conceptually simply way to reconcile the refraction of light in both gravitational situations and optical materials.</p>

Lightspeed ◽  
2019 ◽  
pp. 49-57
Author(s):  
John C. H. Spence

The story of the astronomical observations of James Bradley in the eighteenth century, whose measurements of the small movements of a star throughout the year provided an independent estimate of the speed of the Earth around the Sun relative to the speed of light. His work provided the first experimental evidence in support of Copernicus’s theory that the earth is in motion, and against the idea that it is stationary at the center of the universe. His simple telescope at home, his brilliant idea and perseverance, and his life’s work and influence. The importance of his result for the development of Einstein’s theory of relativity and for theories of the Aether in the following centuries.


Lightspeed ◽  
2019 ◽  
pp. 144-158
Author(s):  
John C. H. Spence

The confused state of theoretical physics in 1900 and the great unresolved issues are summarized, one of which led to the birth of quantum mechanics, and the other to relativity. How it seemed impossible to reconcile Bradley’s measurements of the speed of light with Fresnel’s Aether drag hypothesis, which was well supported by Fizeau’s measurements in Paris of the speed of light in a moving medium (flowing water). Maxwell’s equations predicted a constant speed of light, suggesting an absolute frame of reference in the universe, but did not “transform” in the same way as Newton’s equations from one moving observer to another. How Einstein made sense of all these rival theories and experimental results with his unifying theory of relativity, based on two assumptions. His life and work is discussed, and a simple explanation given of his relativity theory. How the failure of this search for an absolute frame of reference in our universe led him inexorably to perhaps the most famous equation in physics E = mc2, giving the energy release from nuclear explosions and the stars.


Fractals ◽  
2003 ◽  
Vol 11 (02) ◽  
pp. 145-153 ◽  
Author(s):  
A. K. MITTAL ◽  
DAKSH LOHIYA

We present a fractal dust model of the Universe based on Mandelbrot's proposal to replace the standard Cosmological Principle by his Conditional Cosmological Principle within the framework of General Theory of Relativity. This model turns out to be free from the Hubble de-Vaucouleurs paradox and is consistent with the SNe1a observations. The expected galaxy count as a function of red-shift is obtained for this model. An interesting variation is a steady state version, which can account for an accelerating scale factor without any cosmological constant in the model.


Author(s):  
Ahmed Farag Ali

I localize gravity to match its measurements with the local inertial frame of special relativity. I find a geometric interpretation of the speed of light and mass. I find also the relation between every mass measured and the black hole entropy which introduce information-matter equation from gravity. Through localization of gravity, a timeless state of the universe emerges and the uncertainty principle does not hold since the velocity concept is replaced by distance. This would resolve the problem of time because timeless state of the universe emerges naturally and mathematically consistent. This would suggest that gravity form the hidden one variable of quantum mechanics which would complete the relation between quantum mechanics and gravity. We introduce also a principle of least computation which is achieved when the ratio equal to the difference in the process of local gravitational measurements.


2020 ◽  
Author(s):  
Arun Kumar Halihal Shanmukachary

Postulates governing universal object motion s are hypothesized. All o bjects display mass, geometry, andwavelengths (colors) determined either by their inherent properties of transmission or by their interactions withrays of different wavelengths. T h is paper proposes that RMs , which will be defined later, are the fundamentalcaus ation of motion in the UniverseThe motion of objects in theUniverse is governed by Newton 's laws of motion and laws of gravitation. Einstein’sspecial theory of relativity defines the motion of objects through relativistic frames and makes a bold hypothesisthat no object in the universe can surpass the speed of light. However, both, Newton’s and Einstein’s theoriessimply ignore the geometry of objects in defining the motion.This paper will explainho w the number of objects (defined here as RM), geometry of objects andemission/reflective property of objects are the fundamental cause for the origination of motion It is critical tounderstand how the number of objects, geometrical structure of objects and emission/reflective behaviour ofobjects can result in the occurrence of motion in the form of translational, rotational and revolution. When theproperties of objects such as geometry, light emission and the number of objects change, motion changes its forms.This paperis intended to be first of series of papers that will explain the nature of objects, their motion behavior s,and the fundamental nature of a Universe observed via the various object behavior s


2014 ◽  
Vol 3 (3) ◽  
pp. 257-266 ◽  
Author(s):  
Piero Chiarelli

This work shows that in the frame of the stochastic generalization of the quantum hydrodynamic analogy (QHA) the uncertainty principle is fully compatible with the postulate of finite transmission speed of light and information. The theory shows that the measurement process performed in the large scale classical limit in presence of background noise, cannot have a duration smaller than the time need to the light to travel the distance up to which the quantum non-local interaction extend itself. The product of the minimum measuring time multiplied by the variance of energy fluctuation due to presence of stochastic noise shows to lead to the minimum uncertainty principle. The paper also shows that the uncertainty relations can be also derived if applied to the indetermination of position and momentum of a particle of mass m in a quantum fluctuating environment.


2019 ◽  
Author(s):  
Vitaly Kuyukov

Modern general theory of relativity considers gravity as the curvature of space-time. The theory is based on the principle of equivalence. All bodies fall with the same acceleration in the gravitational field, which is equivalent to locally accelerated reference systems. In this article, we will affirm the concept of gravity as the curvature of the relative wave function of the Universe. That is, a change in the phase of the universal wave function of the Universe near a massive body leads to a change in all other wave functions of bodies. The main task is to find the form of the relative wave function of the Universe, as well as a new equation of gravity for connecting the curvature of the wave function and the density of matter.


2019 ◽  
Vol 950 (8) ◽  
pp. 2-11
Author(s):  
S.A. Tolchelnikova ◽  
K.N. Naumov

The Euclidean geometry was developed as a mathematical system due to generalizing thousands years of measurements on the plane and spherical surfaces. The development of celestial mechanics and stellar astronomy confirmed its validity as mathematical principles of natural philosophy, in particular for studying the Solar System bodies’ and Galaxy stars motions. In the non-Euclidean geometries by Lobachevsky and Riemann, the third axiom of modern geometry manuals is substituted. We show that the third axiom of these manuals is a corollary of the Fifth Euclidean postulate. The idea of spherical, Riemannian space of the Universe and local curvatures of space, depending on body mass, was inculcated into celestial mechanics, astronomy and geodesy along with the theory of relativity. The mathematical apparatus of the relativity theory was created from immeasurable quantities


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter provides a few examples of representations of the universe on a large scale—a first step in constructing a cosmological model. It first discusses the Copernican principle, which is an approximation/hypothesis about the matter distribution in the observable universe. The chapter then turns to the cosmological principle—a hypothesis about the geometry of the Riemannian spacetime representing the universe, which is assumed to be foliated by 3-spaces labeled by a cosmic time t which are homogeneous and isotropic, that is, ‘maximally symmetric’. After a discussion on maximally symmetric space, this chapter considers spacetimes with homogenous and isotropic sections. Finally, this chapter discusses Milne and de Sitter spacetimes.


2002 ◽  
Vol 17 (05) ◽  
pp. 295-302
Author(s):  
SUBENOY CHAKRABORTY

In this paper it is shown that the present accelerated expansion of the Universe can be explained only by considering variation of the speed of light, without taking into account the cosmological constant or quintessence matter.


Sign in / Sign up

Export Citation Format

Share Document