scholarly journals Timeless State of Gravity: Possible Solution for Cosmological Constant problem

Author(s):  
Ahmed Farag Ali

We study a localization of gravity through the matching point between non-inertial frames and local inertial frames. This localization of gravity is done through defining relative gravitational red-shift. This lead to an emergence of a timeless state in a mathematically consistent way. In this timeless state of gravity, we find a geometric interpretation of the speed of light and mass. The experimental support of the timeless state is the quantum entanglement and internal symmetries that are independent of time. Therefore gravity would be responsible for measurements independent of time including quantum entanglement. Based on the Gravity/Gauge equivalence in the timeless state, we conjecture that the universe emerged from a black hole with a global $SU(3)\times SU(2)\times U(1)$ symmetry on its event horizon that produces gauge fields Electromagnetism, weak and strong nuclear force through localization of this global symmetry. Through the localization in the gravity field, the timeless measurements such as spin will be correlated with the varying of timeless measurement which is relative gravitational red-shift. We present a gravitational or geometric interpretation of spin-0, spin-1, and spin-1/2 states. We present an interpretation of why do we measure matter rather than anti-matter. We found that the Higgs scalar field is represented by the gravitational red-shift at every point in the space around the black hole. We derive the numerical value of the cosmological constant that agrees with experimental observations.

Author(s):  
Ahmed Farag Ali

We study the localization of gravity through the matching point between non-inertial frames and local inertial frames. This localization of gravity lead to an emergence of a timeless state of the universe in a mathematically consistent way. We find a geometric interpretation of the speed of light and mass. The experimental evidence of the timeless state of the universe is the quantum entanglement and internal symmetries that are independent of time. Since the spin measurement is the manifestation of quantum entanglement measurement. Therefore, the spin of quantum particles is correlated with the relative gravitational red-shift at two different points. The same can be applied to all types of internal symmetries that are independent of time. Therefore gravity represents all measurements independent of time including quantum entanglement. We conclude that the gravity is the global $SU(3)\times SU(2)\times U(1)$ symmetry that produces gauge fields such as Electromagnetism, weak and strong nuclear force through localization with their internal symmetries correlated with the varying of relative gravitational red-shift . We also introduce a gravitational or geometric interpretation of spin-0, spin-1 and spin-1/2 states. We answered the question why do we measure matter and not anti-matter. We Introduce a solution for the Cosmological Constant Problem Value.


Author(s):  
Ahmed Farag Ali

We investigate the matching point between non-inertial frames and local inertial frames. This localization of gravity lead to an emergence of a timeless state of the universe in a mathematically consistent way. We find a geometric interpretation of the speed of light and mass. We find also a relation between every mass measured and the black hole entropy which introduces an information-matter equation from gravity. The experimental evidence of the timeless state of the universe is the quantum entanglement. Since the spin measurement is the manifestation of quantum entanglement measurement. Therefore, the spin of quantum particles can be understood as a relative gravitational red-shift at two different points. Therefore the spin measurements introduce the quantum gravity measurements in local inertial frames. We conjecture that the universe emerges from a black hole that has global symmetry of $SU(3)\times SU(2)\times U(1)$. We introduce a geometric realization of spontaneous symmetry breaking in the timeless state of the universe and emergence of mass.


Author(s):  
Ahmed Farag Ali

We investigate the matching point between non-inertial frames and local inertial frames. This localization of gravity lead to an emergence of a timeless state of the universe in a mathematically consistent way. We find a geometric interpretation of the speed of light and mass. I find also a relation between every mass measured and the black hole entropy which introduces an information-matter equation from gravity. The experimental evidence of the timeless state of the universe is the quantum entanglement. Since the spin measurement is the manifestation of quantum entanglement measurement. Therefore, the internal spin of quantum particles can be understood as a relative gravitational red-shift at two different points. Therefore the spin measurements introduce the quantum gravity measurements in local inertial frames. We found that uncertainty is reduced as the measurements happens closely to the gravitational source. Least computations of gravitational measurement is achieved when the relative gravitational red-shift is equal to the difference in gravitational red-shift.


Author(s):  
Ahmed Farag Ali

We investigate the matching point between non-inertial frames and local inertial frames. This localization of gravity lead to an emergence of a timeless state of the universe in a mathematically consistent way. I find a geometric interpretation of the speed of light and mass. I find also a relation between every mass measured and the black hole entropy which introduces an information-matter equation from gravity. The experimental evidence of the timeless state of the universe is the quantum entanglement. Since the spin measurement is the manifestation of quantum entanglement measurement. Therefore, the spin of quantum particle can be understood as a relative gravitational red-shift. Therefore the spin quantum number is understood as a quantum gravity measurement in local inertial frames. We introduce also guidance that leads to the least computations of gravitational measurement which is achieved when the ratio equal to the difference.


2004 ◽  
Vol 13 (05) ◽  
pp. 885-898
Author(s):  
LI XIANG

Bekenstein argues that the horizon area of a black hole has a constant distance spectrum. We investigate the effects of such a discrete spectrum on the thermodynamics of a Schwarzchild black hole (SBH) and a Schwarzchild–de Sitter black hole (SdBH), in terms of the time-energy uncertainty relation and Stefan–Boltzman law. For the massive SBH, a negative and logarithmic correction to the Bekenstein–Hawking entropy is obtained, as well as other authors by using other methods. As to the minimal hole near the Planck scale, its entropy is no longer proportional to the horizon area, but is of order of the mass of the hole. This is similar to an excited stringy state. The vanishing heat capacity of such a minimal black hole implies that it may be a remnant as the ground state of the evaporating hole. The properties of a SdBH are similar to the SBH, except for an additional term of square area associated with the cosmological constant. In order to maintain the validity of the Bekenstein–Hawking formula, the cosmological constant is strongly limited by the size of the biggest black hole in the universe. A relation associated with the cosmological constant, Planck area and the Stefan–Boltzman constant is obtained. The cosmological constant is not only related to the vacuum energy, but is also related to the thermodynamics.


Author(s):  
Ahmed Farag Ali

In this paper, we investigate how Rindler observer measures the universe in the ADM formalism. We compute his measurements in each slice of the space-time in terms of gravitational red-shift which is a property of general covariance. In this way, we found special relativity preferred frames to match with the general relativity Rindler frame in ADM formalism. This may resolve the widely known incompatibility between special relativity and general relativity on how each theory sees the red-shift. We found a geometric interpretation of the speed of light and mass.


2017 ◽  
Vol 15 (01) ◽  
pp. 1850004 ◽  
Author(s):  
Rafael C. Nunes ◽  
Hooman Moradpour ◽  
Edésio M. Barboza ◽  
Everton M. C. Abreu ◽  
Jorge Ananias Neto

In this paper, we investigated the effects of a noncommutative (NC) space-time on the dynamics of the Universe. We generalize the black hole entropy for a NC black hole. Then, using the entropic gravity formalism, we will show that the noncommutativity changes the strength of the gravitational field. By applying this result to a homogeneous and isotropic Universe containing nonrelativistic matter and a cosmological constant, we show that the modified scenario by the noncommutativity of the space-time is a better fit to the obtained data than the standard one at 68% CL.


Author(s):  
Ahmed Farag Ali

I localize gravity to match its measurements with the local inertial frame of special relativity. I find a geometric interpretation of the speed of light and mass. I find also a relation between every mass measured and the black hole entropy which introduces information-matter equation from gravity. Through localization of gravity, a timeless state of the universe emerges and the uncertainty principle does not hold since the velocity concept is replaced by distance in this timeless state. This would resolve the problem of time because timeless state of the universe emerges naturally and mathematically consistent. This would suggest that gravity form the hidden one variable of quantum mechanics which would complete the relation between quantum mechanics and gravity. The experimental evidence of timeless state of the universe is the quantum entanglement. Since the spin measurement is the manifestation of quantum entanglement. Therefore, the spin of quantum particle can be originated from geometrical or gravitational red-shift. We introduce also a principle of least computation which is achieved when the ratio equal to the difference in the process of local gravitational measurements.


2005 ◽  
Vol 201 ◽  
pp. 437-438
Author(s):  
V. B. Bhatia ◽  
D. Jain ◽  
S. Mahajan ◽  
N. Panchapakesan

We apply gravitational lensing statistics to: (1) place a limit on the cosmological constant (ΩΛ); (2) place a limit on the average red-shift (< z >) of gamma-ray bursters (GRBs); (3) investigate models of galaxy evolution to see how compatible these models are with lensing statistics. We also point out the sources of uncertainty in lensing statistics, leading to uncertainty in the results.


Sign in / Sign up

Export Citation Format

Share Document