scholarly journals Impact on Mechanical Properties and Microstructural Response of Nickel-Based Super-Alloy GH4169 Subjected to Warm Laser Shock Peening

Author(s):  
Ying Lu ◽  
Yuling Yang ◽  
Jibin Zhao ◽  
Yuqi Yang ◽  
Hongchao Qiao ◽  
...  

Laser shock peening as an innovative surface treatment technology can effectively improve the fatigue life, sur-face hardness, corrosion resistance, and residual compressive stress. Compared with the laser shock peening, the warm laser shock peening (WLSP) is a new surface treatment technology to improve materials’ surface performances, which takes advantage of thermal mechanical effects on stress strengthening and micro-structure strengthening, results in more stable distribution of the residual compressive stress under heating and cyclic loading process. In this paper, the microstructure of GH4169 nickel super-alloy processed by WLSP technology with differ-ent laser parameters were investigated. The proliferation and tangling of dislocations in GH4169 were observed and the dislocation density increased after WLSP treatment. The influences of different treatment by LSP and WLSP on the microhardness distribution of the surface and along cross-sectional depth were investi-gated. The microstructure evolution of the GH4169 alloy being shocked with WLSP were studied by TEM. The effect of temperature on the stability of high temperature microstructure and properties of GH4169 alloy WLP was investigated.

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5172
Author(s):  
Ying Lu ◽  
Yuling Yang ◽  
Jibin Zhao ◽  
Yuqi Yang ◽  
Hongchao Qiao ◽  
...  

Laser shock peening (LSP), as an innovative surface treatment technology, can effectively improve fatigue life, surface hardness, corrosion resistance, and residual compressive stress. Compared with laser shock peening, warm laser shock peening (WLSP) is a newer surface treatment technology used to improve materials’ surface performances, which takes advantage of thermal mechanical effects on stress strengthening and microstructure strengthening, resulting in a more stable distribution of residual compressive stress under the heating and cyclic loading process. In this paper, the microstructure of the GH4169 nickel superalloy processed by WLSP technology with different laser parameters was investigated. The proliferation and tangling of dislocations in GH4169 were observed, and the dislocation density increased after WLSP treatment. The influences of different treatments by LSP and WLSP on the microhardness distribution of the surface and along the cross-sectional depth were investigated. The microstructure evolution of the GH4169 alloy being shocked with WLSP was studied by TEM. The effect of temperature on the stability of the high-temperature microstructure and properties of the GH4169 alloy shocked by WLSP was investigated.


2014 ◽  
Vol 670-671 ◽  
pp. 52-55
Author(s):  
Yan Chai ◽  
Wei Feng He ◽  
Guang Yu He ◽  
Yu Qin Li

To solve the crack and fracture problem in blade made of K403 alloy, the samples of K403 are laser shock processed and then the microstructure, microhardness, residual compressive stress and surface roughness of the samples are tested. The test results show that some grains are observed refined in the grain boundary of shock region, the microhardness improves in a depth of 0.8mm from the surface and the surface microhardness improves 16%, a residual compressive stress which is more than 450MPa is developed in a depth of 1mm from the surface, and obvious changes of the surface roughness are not tested.


2010 ◽  
Vol 135 ◽  
pp. 209-214 ◽  
Author(s):  
Wei Feng He ◽  
Ying Hong Li ◽  
Qi Peng Li ◽  
Hai Lei Liu ◽  
Yu Qin Li ◽  
...  

The goal of this work was to determine effects of laser shock peening (LSP) on the fatigue life of the nickel-based superalloy, as well as the mechanism including the residual stress-depth profile (both depth of compression and magnitude) and the microstructure. The vibration fatigue performance of the standard test coupons made by Ni-based superalloy K417 with and without laser shock peening is researched. The residual stress distribution and microscopic structure after LSP are tested and analyzed by X-ray diffraction, SEM and TEM. The results indicated that the compress residual stress is up to 1.0mm in the test coupons after LSP, and the maximum residual compressive stress is about 660MPa under the surface. At the same time, the high pressure shock wave caused by laser propagate into the material which formed high density dislocation in the surface of the samples, and the γ' is divided leading to increase the sub-grain. Because of the deep residual compressive stress, high density dislocation and much more sub-grains, the vibration fatigue strength is improved about 180MPa by LSP. It is very instructive in the structure design and applying LSP to Ni-based superalloy.


Applied laser ◽  
2013 ◽  
Vol 33 (2) ◽  
pp. 139-143
Author(s):  
Ji Xinglu ◽  
Zhou Jianzhong ◽  
Huang Su ◽  
Chen Hansong ◽  
Xie Xiaojiang ◽  
...  

Applied laser ◽  
2013 ◽  
Vol 33 (2) ◽  
pp. 139-143 ◽  
Author(s):  
Ji Xinglu ◽  
Zhou Jianzhong ◽  
Huang Su ◽  
Chen Hansong ◽  
Xie Xiaojiang ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Fang Li ◽  
Xue Qi ◽  
Dan Xiang

Laser shock peening (LSP) is a surface treatment process for airfoils that is achieved by the induction of compressive stress. While LSP is a mature and reliable surface treatment process, slight anomalies during the process, or variations in material ductility and geometries, may cause unintended formation of small subsurface cracks in the resultant LSP processed material. In this study, we developed a 3D FEM model to simulate the formation and predict the sizes of cracks generated by inappropriate LSP processing in airfoil specimens in order to avoid producing such subsurface cracks. The Johnson-Cook plastic material model along with the consideration of effects of high strain rate was used to describe the plasticity of Ti alloys. The constants in this plastic model have been optimized with experimental data. The FEM model also includes both damage initiation and evolution criteria to simulate cracks generated by LSP process in the specimens. The simulated crack sizes and locations in the specimens have been validated by the experimental results.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1878
Author(s):  
Xiangfan Nie ◽  
Yuyuan Tang ◽  
Feifan Zhao ◽  
Li Yan ◽  
Haonian Wu ◽  
...  

In the laser shock peening process of titanium alloy thin blades, a shock wave will be repeatedly reflected and coupled in the blades, resulting in the failure of the formation of a gradient residual compressive stress layer, which is the key to improve fatigue performance and resist foreign object impact. This paper takes TC17 titanium alloy sheet as the research object to reveal the influence mechanism on residual stress-strain profile of shock wave reflection-coupling by shock wave propagation and key position dynamic response. Based on the result of influence mechanism, two wave transmission methods are proposed to regulate shock wave in order to reduce the intensity of shock wave reflection. The analysis shows that the high strength stress be formed when the shock wave is reflected and coupled in the sheet, which causes the re-plastic deformation and the decrease of transverse plastic strain. This eventually leads to residual tensile stress up to 410 MPa being formed within a 0.5 mm radial direction and 0.3 mm deep of the spot range. The use of "soft" and "hard" wave-transmitting layers greatly reduces the shock wave reflection intensity, and under the condition of the "hard" wave-transmitting layer, a better impedance matching is achieved, resulting in a residual compressive stress of about 400 MPa.


2014 ◽  
Vol 651-653 ◽  
pp. 34-37 ◽  
Author(s):  
Chen Hu ◽  
Hou Jun Qi ◽  
Xing Hui Zhang ◽  
Zhi Gang Che ◽  
Shu Ying Zhang

This paper, using the finite element software ABAQUS, establishes the model of laser shock peening (LSP) of TC4 titanium alloy, and analyzes the influence of different parameters on the residual stress of TC4 titanium alloy and plastic deformation. The results show that LSP can make the surface of TC4 titanium alloy have large compressive stress and plastic deformation, hardness and prolong the fatigue life of materials. Laser energy and the impact frequency are the main factor of surface residual stress effects. The multi-point LSP can perform processing enhanced in surface area, and form residual compressive stress on the surface of the material and in a certain depth.


Sign in / Sign up

Export Citation Format

Share Document