scholarly journals Finite Element Modeling of Crack Generation in Laser Shock Peening Processed Airfoils

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Fang Li ◽  
Xue Qi ◽  
Dan Xiang

Laser shock peening (LSP) is a surface treatment process for airfoils that is achieved by the induction of compressive stress. While LSP is a mature and reliable surface treatment process, slight anomalies during the process, or variations in material ductility and geometries, may cause unintended formation of small subsurface cracks in the resultant LSP processed material. In this study, we developed a 3D FEM model to simulate the formation and predict the sizes of cracks generated by inappropriate LSP processing in airfoil specimens in order to avoid producing such subsurface cracks. The Johnson-Cook plastic material model along with the consideration of effects of high strain rate was used to describe the plasticity of Ti alloys. The constants in this plastic model have been optimized with experimental data. The FEM model also includes both damage initiation and evolution criteria to simulate cracks generated by LSP process in the specimens. The simulated crack sizes and locations in the specimens have been validated by the experimental results.

Author(s):  
M. Hashsish ◽  
A. Chillman ◽  
M. Ramulu

An experimental study was conducted to explore the high-pressure waterjet (WJ) peening at 600MPa on the surface integrity and texture of metals. The concept of larger droplet size and multiple droplet impacts resulting from an ultra high-pressure waterjet (UHPWJ) was used to explore and develop the peening process. A combination of microstructure analysis, microhardness measurements, and profilometry were used in determining the depth of plastic deformation and surface texture that result from the surface treatment process. It was found that waterjet peening at 600MPa induces plastic deformation to greater depths in the sub-surface layer of metals than laser shock peening. The degree of plastic deformation and the state of material surface were found to be strongly dependent on the peening conditions and desired surface roughness. Based on these first investigation results, water peening at 600MPa may serve as a new method for introducing compressive residual stresses in engineering components.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5172
Author(s):  
Ying Lu ◽  
Yuling Yang ◽  
Jibin Zhao ◽  
Yuqi Yang ◽  
Hongchao Qiao ◽  
...  

Laser shock peening (LSP), as an innovative surface treatment technology, can effectively improve fatigue life, surface hardness, corrosion resistance, and residual compressive stress. Compared with laser shock peening, warm laser shock peening (WLSP) is a newer surface treatment technology used to improve materials’ surface performances, which takes advantage of thermal mechanical effects on stress strengthening and microstructure strengthening, resulting in a more stable distribution of residual compressive stress under the heating and cyclic loading process. In this paper, the microstructure of the GH4169 nickel superalloy processed by WLSP technology with different laser parameters was investigated. The proliferation and tangling of dislocations in GH4169 were observed, and the dislocation density increased after WLSP treatment. The influences of different treatments by LSP and WLSP on the microhardness distribution of the surface and along the cross-sectional depth were investigated. The microstructure evolution of the GH4169 alloy being shocked with WLSP was studied by TEM. The effect of temperature on the stability of the high-temperature microstructure and properties of the GH4169 alloy shocked by WLSP was investigated.


Author(s):  
Ying Lu ◽  
Yuling Yang ◽  
Jibin Zhao ◽  
Yuqi Yang ◽  
Hongchao Qiao ◽  
...  

Laser shock peening as an innovative surface treatment technology can effectively improve the fatigue life, sur-face hardness, corrosion resistance, and residual compressive stress. Compared with the laser shock peening, the warm laser shock peening (WLSP) is a new surface treatment technology to improve materials’ surface performances, which takes advantage of thermal mechanical effects on stress strengthening and micro-structure strengthening, results in more stable distribution of the residual compressive stress under heating and cyclic loading process. In this paper, the microstructure of GH4169 nickel super-alloy processed by WLSP technology with differ-ent laser parameters were investigated. The proliferation and tangling of dislocations in GH4169 were observed and the dislocation density increased after WLSP treatment. The influences of different treatment by LSP and WLSP on the microhardness distribution of the surface and along cross-sectional depth were investi-gated. The microstructure evolution of the GH4169 alloy being shocked with WLSP were studied by TEM. The effect of temperature on the stability of high temperature microstructure and properties of GH4169 alloy WLP was investigated.


2018 ◽  
Vol 335 ◽  
pp. 32-40 ◽  
Author(s):  
Zhaopeng Tong ◽  
Xudong Ren ◽  
Yunpeng Ren ◽  
Fengze Dai ◽  
Yunxia Ye ◽  
...  

2021 ◽  
Author(s):  
D. S. Shtereveria ◽  
A. A. Volkova ◽  
A. A. Kholopov ◽  
M. A. Melnikova ◽  
D. M. Melnikov

Sign in / Sign up

Export Citation Format

Share Document