scholarly journals Influence of Laser Shock Peening Surface Treatment on Fatigue Endurance of Welded Joints from S355 Structural Steel

2016 ◽  
Vol 16 (1) ◽  
pp. 154-159 ◽  
Author(s):  
Ján Lago ◽  
Mario Guagliano ◽  
František Nový ◽  
Otakar Bokůvka
2018 ◽  
Vol 1109 ◽  
pp. 012018 ◽  
Author(s):  
I. N. Shiganov ◽  
A. I. Misurov ◽  
D. M. Melnikov

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5172
Author(s):  
Ying Lu ◽  
Yuling Yang ◽  
Jibin Zhao ◽  
Yuqi Yang ◽  
Hongchao Qiao ◽  
...  

Laser shock peening (LSP), as an innovative surface treatment technology, can effectively improve fatigue life, surface hardness, corrosion resistance, and residual compressive stress. Compared with laser shock peening, warm laser shock peening (WLSP) is a newer surface treatment technology used to improve materials’ surface performances, which takes advantage of thermal mechanical effects on stress strengthening and microstructure strengthening, resulting in a more stable distribution of residual compressive stress under the heating and cyclic loading process. In this paper, the microstructure of the GH4169 nickel superalloy processed by WLSP technology with different laser parameters was investigated. The proliferation and tangling of dislocations in GH4169 were observed, and the dislocation density increased after WLSP treatment. The influences of different treatments by LSP and WLSP on the microhardness distribution of the surface and along the cross-sectional depth were investigated. The microstructure evolution of the GH4169 alloy being shocked with WLSP was studied by TEM. The effect of temperature on the stability of the high-temperature microstructure and properties of the GH4169 alloy shocked by WLSP was investigated.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Fang Li ◽  
Xue Qi ◽  
Dan Xiang

Laser shock peening (LSP) is a surface treatment process for airfoils that is achieved by the induction of compressive stress. While LSP is a mature and reliable surface treatment process, slight anomalies during the process, or variations in material ductility and geometries, may cause unintended formation of small subsurface cracks in the resultant LSP processed material. In this study, we developed a 3D FEM model to simulate the formation and predict the sizes of cracks generated by inappropriate LSP processing in airfoil specimens in order to avoid producing such subsurface cracks. The Johnson-Cook plastic material model along with the consideration of effects of high strain rate was used to describe the plasticity of Ti alloys. The constants in this plastic model have been optimized with experimental data. The FEM model also includes both damage initiation and evolution criteria to simulate cracks generated by LSP process in the specimens. The simulated crack sizes and locations in the specimens have been validated by the experimental results.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744045 ◽  
Author(s):  
Chun Su ◽  
Jianzhong Zhou ◽  
Xiankai Meng ◽  
Jie Sheng

Welded joints made of 6061-T6 Al alloy were studied to evaluate warm laser shock peening (WLSP) and laser shock peening (LSP) processes. The estimation model of laser-induced surface residual stress was examined by means of experiments and numerical analysis. The high-cycle fatigue lives of welded joint specimens treated with WLSP and LSP were estimated by conducting tensile fatigue tests. The fatigue fracture mechanisms of these specimens are studied by surface integrity and fracture surface tests. Experimental results and analysis indicated that the fatigue life of the specimens processed by WLSP was higher than that with LSP. The large increase in fatigue life appeared to be the result of the larger residual stress, more uniform microstructure refinement and the lower surface roughness of the WLSP specimens.


Sign in / Sign up

Export Citation Format

Share Document