scholarly journals TEfinder: A Bioinformatics Pipeline for Detecting New Transposable Element Insertion Events in Next-Generation Sequencing Data

Author(s):  
Vista Sohrab ◽  
Cristina López-Díaz ◽  
Antonio Di Pietro ◽  
Li-Jun Ma ◽  
Dilay Hazal Ayhan

Transposable elements (TEs) are mobile genetic elements capable of rapidly altering the genome through their movements. The importance of TE activity has been documented in many biological processes, such as introducing genetic instability, altering patterns of gene expression, and accelerating genome evolution. Increasing appreciation of TEs results in the growing number of bioinformatics software to identify insertion events. However, the application of existing TE finding tools is limited by either narrow-focused design of the package, too many dependencies on other tools, or prior knowledge required as input files that may not be readily available to all users. Here, we report a simple pipeline, TEfinder, developed for the detection of new TE insertions with minimal software dependencies using four inputs that can be easily generated with popular variant calling pipelines. The external software requirements are BEDTools, SAMtools, and Picard. Necessary inputs include TEs present in the reference genome, binary paired-end alignment, reference genome index, and a list of TE names. We tested TEfinder pipeline among several evolving populations of Fusarium oxysporum generated through a short-term adaptation study. Our results demonstrate that this easy-to-use tool can effectively detect new TE insertion events, making it accessible and practical for TE analysis.

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 224
Author(s):  
Vista Sohrab ◽  
Cristina López-Díaz ◽  
Antonio Di Pietro ◽  
Li-Jun Ma ◽  
Dilay Hazal Ayhan

Transposable elements (TEs) are mobile elements capable of introducing genetic changes rapidly. Their importance has been documented in many biological processes, such as introducing genetic instability, altering patterns of gene expression, and accelerating genome evolution. Increasing appreciation of TEs has resulted in a growing number of bioinformatics software to identify insertion events. However, the application of existing tools is limited by either narrow-focused design of the package, too many dependencies on other tools, or prior knowledge required as input files that may not be readily available to all users. Here, we reported a simple pipeline, TEfinder, developed for the detection of new TE insertions with minimal software and input file dependencies. The external software requirements are BEDTools, SAMtools, and Picard. Necessary input files include the reference genome sequence in FASTA format, an alignment file from paired-end reads, existing TEs in GTF format, and a text file of TE names. We tested TEfinder among several evolving populations of Fusarium oxysporum generated through a short-term adaptation study. Our results demonstrate that this easy-to-use tool can effectively detect new TE insertion events, making it accessible and practical for TE analysis.


GigaScience ◽  
2019 ◽  
Vol 8 (7) ◽  
Author(s):  
Timothy H Webster ◽  
Madeline Couse ◽  
Bruno M Grande ◽  
Eric Karlins ◽  
Tanya N Phung ◽  
...  

Abstract Background Mammalian X and Y chromosomes share a common evolutionary origin and retain regions of high sequence similarity. Similar sequence content can confound the mapping of short next-generation sequencing reads to a reference genome. It is therefore possible that the presence of both sex chromosomes in a reference genome can cause technical artifacts in genomic data and affect downstream analyses and applications. Understanding this problem is critical for medical genomics and population genomic inference. Results Here, we characterize how sequence homology can affect analyses on the sex chromosomes and present XYalign, a new tool that (1) facilitates the inference of sex chromosome complement from next-generation sequencing data; (2) corrects erroneous read mapping on the sex chromosomes; and (3) tabulates and visualizes important metrics for quality control such as mapping quality, sequencing depth, and allele balance. We find that sequence homology affects read mapping on the sex chromosomes and this has downstream effects on variant calling. However, we show that XYalign can correct mismapping, resulting in more accurate variant calling. We also show how metrics output by XYalign can be used to identify XX and XY individuals across diverse sequencing experiments, including low- and high-coverage whole-genome sequencing, and exome sequencing. Finally, we discuss how the flexibility of the XYalign framework can be leveraged for other uses including the identification of aneuploidy on the autosomes. XYalign is available open source under the GNU General Public License (version 3). Conclusions Sex chromsome sequence homology causes the mismapping of short reads, which in turn affects downstream analyses. XYalign provides a reproducible framework to correct mismapping and improve variant calling on the sex chromsomes.


2018 ◽  
Vol 116 (3) ◽  
pp. 950-959 ◽  
Author(s):  
Patrick Maffucci ◽  
Benedetta Bigio ◽  
Franck Rapaport ◽  
Aurélie Cobat ◽  
Alessandro Borghesi ◽  
...  

Computational analyses of human patient exomes aim to filter out as many nonpathogenic genetic variants (NPVs) as possible, without removing the true disease-causing mutations. This involves comparing the patient’s exome with public databases to remove reported variants inconsistent with disease prevalence, mode of inheritance, or clinical penetrance. However, variants frequent in a given exome cohort, but absent or rare in public databases, have also been reported and treated as NPVs, without rigorous exploration. We report the generation of a blacklist of variants frequent within an in-house cohort of 3,104 exomes. This blacklist did not remove known pathogenic mutations from the exomes of 129 patients and decreased the number of NPVs remaining in the 3,104 individual exomes by a median of 62%. We validated this approach by testing three other independent cohorts of 400, 902, and 3,869 exomes. The blacklist generated from any given cohort removed a substantial proportion of NPVs (11–65%). We analyzed the blacklisted variants computationally and experimentally. Most of the blacklisted variants corresponded to false signals generated by incomplete reference genome assembly, location in low-complexity regions, bioinformatic misprocessing, or limitations inherent to cohort-specific private alleles (e.g., due to sequencing kits, and genetic ancestries). Finally, we provide our precalculated blacklists, together with ReFiNE, a program for generating customized blacklists from any medium-sized or large in-house cohort of exome (or other next-generation sequencing) data via a user-friendly public web server. This work demonstrates the power of extracting variant blacklists from private databases as a specific in-house but broadly applicable tool for optimizing exome analysis.


2017 ◽  
Author(s):  
Jade C.S. Chung ◽  
Swaine L. Chen

AbstractNext-generation sequencing data is accompanied by quality scores that quantify sequencing error. Inaccuracies in these quality scores propagate through all subsequent analyses; thus base quality score recalibration is a standard step in many next-generation sequencing workflows, resulting in improved variant calls. Current base quality score recalibration algorithms rely on the assumption that sequencing errors are already known; for human resequencing data, relatively complete variant databases facilitate this. However, because existing databases are still incomplete, recalibration is still inaccurate; and most organisms do not have variant databases, exacerbating inaccuracy for non-human data. To overcome these logical and practical problems, we introduce Lacer, which recalibrates base quality scores without assuming knowledge of correct and incorrect bases and without requiring knowledge of common variants. Lacer is the first logically sound, fully general, and truly accurate base recalibrator. Lacer enhances variant identification accuracy for resequencing data of human as well as other organisms (which are not accessible to current recalibrators), simultaneously improving and extending the benefits of base quality score recalibration to nearly all ongoing sequencing projects. Lacer is available at: https://github.com/swainechen/lacer.


2021 ◽  
Author(s):  
Gelana Khazeeva ◽  
Karolis Sablauskas ◽  
Bart van der Sanden ◽  
Wouter Steyaert ◽  
Michael Kwint ◽  
...  

De novo mutations (DNMs) are an important cause of genetic disorders. The accurate identification of DNMs from sequencing data is therefore fundamental to rare disease research and diagnostics. Unfortunately, identifying reliable DNMs remains a major challenge due to sequence errors, uneven coverage, and mapping artifacts. Here, we developed a deep convolutional neural network (CNN) DNM caller (DeNovoCNN), that encodes alignment of sequence reads for a trio as 160×164 resolution images. DeNovoCNN was trained on DNMs of whole exome sequencing (WES) of 2003 trios achieving on average 99.2% recall and 93.8% precision. We find that DeNovoCNN has increased recall/sensitivity and precision compared to existing de novo calling approaches (GATK, DeNovoGear, Samtools) based on the Genome in a Bottle reference dataset. Sanger validations of DNMs called in both exome and genome datasets confirm that DeNovoCNN outperforms existing methods. Most importantly, we show that DeNovoCNN is robust against different exome sequencing and analyses approaches, thereby allowing it to be applied on other datasets. DeNovoCNN is freely available and can be run on existing alignment (BAM/CRAM) and variant calling (VCF) files from WES and WGS without a need for variant recalling.


2018 ◽  
Author(s):  
Tamsen Dunn ◽  
Gwenn Berry ◽  
Dorothea Emig-Agius ◽  
Yu Jiang ◽  
Serena Lei ◽  
...  

AbstractMotivationNext-Generation Sequencing (NGS) technology is transitioning quickly from research labs to clinical settings. The diagnosis and treatment selection for many acquired and autosomal conditions necessitate a method for accurately detecting somatic and germline variants, suitable for the clinic.ResultsWe have developed Pisces, a rapid, versatile and accurate small variant calling suite designed for somatic and germline amplicon sequencing applications. Pisces accuracy is achieved by four distinct modules, the Pisces Read Stitcher, Pisces Variant Caller, the Pisces Variant Quality Recalibrator, and the Pisces Variant Phaser. Each module incorporates a number of novel algorithmic strategies aimed at reducing noise or increasing the likelihood of detecting a true variant.AvailabilityPisces is distributed under an open source license and can be downloaded from https://github.com/Illumina/Pisces. Pisces is available on the BaseSpace™ SequenceHub as part of the TruSeq Amplicon workflow and the Illumina Ampliseq Workflow. Pisces is distributed on Illumina sequencing platforms such as the MiSeq™, and is included in the Praxis™ Extended RAS Panel test which was recently approved by the FDA for the detection of multiple RAS gene [email protected] informationSupplementary data are available online.


2017 ◽  
Author(s):  
Merly Escalona ◽  
Sara Rocha ◽  
David Posada

AbstractMotivationAdvances in sequencing technologies have made it feasible to obtain massive datasets for phylogenomic inference, often consisting of large numbers of loci from multiple species and individuals. The phylogenomic analysis of next-generation sequencing (NGS) data implies a complex computational pipeline where multiple technical and methodological decisions are necessary that can influence the final tree obtained, like those related to coverage, assembly, mapping, variant calling and/or phasing.ResultsTo assess the influence of these variables we introduce NGSphy, an open-source tool for the simulation of Illumina reads/read counts obtained from haploid/diploid individual genomes with thousands of independent gene families evolving under a common species tree. In order to resemble real NGS experiments, NGSphy includes multiple options to model sequencing coverage (depth) heterogeneity across species, individuals and loci, including off-target or uncaptured loci. For comprehensive simulations covering multiple evolutionary scenarios, parameter values for the different replicates can be sampled from user-defined statistical distributions.AvailabilitySource code, full documentation and tutorials including a quick start guide are available at http://github.com/merlyescalona/[email protected]. [email protected]


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2741 ◽  
Author(s):  
Miika J. Ahdesmäki ◽  
Simon R. Gray ◽  
Justin H. Johnson ◽  
Zhongwu Lai

Grafting of cell lines and primary tumours is a crucial step in the drug development process between cell line studies and clinical trials. Disambiguate is a program for computationally separating the sequencing reads of two species derived from grafted samples. Disambiguate operates on alignments to the two species and separates the components at very high sensitivity and specificity as illustrated in artificially mixed human-mouse samples. This allows for maximum recovery of data from target tumours for more accurate variant calling and gene expression quantification. Given that no general use open source algorithm accessible to the bioinformatics community exists for the purposes of separating the two species data, the proposed Disambiguate tool presents a novel approach and improvement to performing sequence analysis of grafted samples. Both Python and C++ implementations are available and they are integrated into several open and closed source pipelines. Disambiguate is open source and is freely available at https://github.com/AstraZeneca-NGS/disambiguate.


Sign in / Sign up

Export Citation Format

Share Document