scholarly journals Preventing Evaporation Products for High-quality Metal Film in Directed Energy Deposition: A Review

Author(s):  
Kang-Hyung Kim ◽  
Chan-Hyun Jung ◽  
Dae-Yong Jeong ◽  
Soong-Keun Hyun

Directed Energy Deposition (DED) is a process that enables high-speed deposition with a sub-millimeter thickness using laser technology. Thus far, defect studies on additive manufacturing, including DED, have focused mostly on preventing pores and crack defects that reduce fatigue strength. On the other hand, evaporation products, fumes and spatters, generated by the high energy have often been neglected despite being some of the main causes of porosity and defects. In high-quality metal deposition, the problems caused by evaporation products are difficult to solve, but they have not yet caught the attention of metallurgists and physicists. This review examines the effect of the laser, material, and process parameters on the evaporation products to help obtain a high-quality metal film layer in thin-DED.

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 353
Author(s):  
Kang-Hyung Kim ◽  
Chan-Hyun Jung ◽  
Dae-Yong Jeong ◽  
Soong-Keun Hyun

Directed energy deposition (DED), a type of additive manufacturing (AM) is a process that enables high-speed deposition using laser technology. The application of DED extends not only to 3D printing, but also to the 2D surface modification by direct laser-deposition dissimilar materials with a sub-millimeter thickness. One of the reasons why DED has not been widely applied in the industry is the low velocity with a few m/min, but thin-DED has been developed to the extent that it can be over 100 m/min in roller deposition. The remaining task is to improve quality by reducing defects. Thus far, defect studies on AM, including DED, have focused mostly on preventing pores and crack defects that reduce fatigue strength. However, evaporation products, fumes, and spatters, were often neglected despite being one of the main causes of porosity and defects. In high-quality metal deposition, the problems caused by evaporation products are difficult to solve, but they have not yet caught the attention of metallurgists and physicists. This review examines the effect of the laser, material, and process parameters on the evaporation products to help obtain a high-quality metal film layer in thin-DED.


2021 ◽  
Vol 27 (11) ◽  
pp. 37-42
Author(s):  
Himani Naesstroem ◽  
Frank Brueckner ◽  
Alexander F.H. Kaplan

Purpose This paper aims to gain an understanding of the behaviour of iron ore when melted by a laser beam in a continuous manner. This fundamental knowledge is essential to further develop additive manufacturing routes such as production of low cost parts and in-situ reduction of the ore during processing. Design/methodology/approach Blown powder directed energy deposition was used as the processing method. The process was observed through high-speed imaging, and computed tomography was used to analyse the specimens. Findings The experimental trials give preliminary results showing potential for the processability of iron ore for additive manufacturing. A large and stable melt pool is formed in spite of the inhomogeneous material used. Single and multilayer tracks could be deposited. Although smooth and even on the surface, the single layer tracks displayed porosity. In case of multilayered tracks, delamination from the substrate material and deformation can be seen. High-speed videos of the process reveal various process phenomena such as melting of ore powder during feeding, cloud formation, melt pool size, melt flow and spatter formation. Originality/value Very little literature is available that studies the possible use of ore in additive manufacturing. Although the process studied here is not industrially useable as is, it is a step towards processing cheap unprocessed material with a laser beam.


Author(s):  
Jin Wang ◽  
Yachao Wang ◽  
Jing Shi ◽  
Yutai Su

Abstract Directed energy deposition (DED) is a major additive manufacturing (AM) process, which employs high energy beams as the heat source to melt and deposit metal powder in a layer-by-layer fashion such that complex components can be manufactured. In this study, a magnetic-field-assisted DED method is applied to control the microstructure and element distribution in the deposited materials. For this purpose, to control the microstructure of DED-built 316L stainless steel, a horizontal magnetic field is introduced during the DED process at different levels of magnetic field intensities (i.e., 0T, 1.0T and 1.8T). Scanning electron microscopy (SEM) and energy dispersive X-Ray spectroscopy (EDS) are used to characterize the microstructure of components obtained with different magnetic field strengths. The results show that the microstructure of deposited materials is significantly affected by the external magnetic field. Also, the result of interdendritic microsegregation pattern presents a transformation from continuous morphology to discrete morphology because of the applied magnetic field. Along with the increasing horizontal magnetic field intensity, nickel and chromium content are changed significantly in austenite and ferrite.


2019 ◽  
Vol 30 ◽  
pp. 100838 ◽  
Author(s):  
N. Ur Rahman ◽  
L. Capuano ◽  
S. Cabeza ◽  
M. Feinaeugle ◽  
A. Garcia-Junceda ◽  
...  

JOM ◽  
2020 ◽  
Vol 73 (1) ◽  
pp. 189-200 ◽  
Author(s):  
Sarah J. Wolff ◽  
Samantha Webster ◽  
Niranjan D. Parab ◽  
Benjamin Aronson ◽  
Benjamin Gould ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sarah J. Wolff ◽  
Hao Wu ◽  
Niranjan Parab ◽  
Cang Zhao ◽  
Kornel F. Ehmann ◽  
...  

2019 ◽  
Vol 25 (S2) ◽  
pp. 2556-2557 ◽  
Author(s):  
Samantha Webster ◽  
Sarah Wolff ◽  
Jennifer Bennett ◽  
Tao Sun ◽  
Jian Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document