scholarly journals Comparing Biochar-Swine Manure Mixture to Conventional Manure Impact on Soil Nutrient Availability and Plant Uptake – A Greenhouse Study

Author(s):  
Chumki Banik ◽  
Jacek Koziel ◽  
Darcy Bonds ◽  
Asheesh Singh ◽  
Mark Licht

The use of swine manure as a source of plant nutrients is one alternative to synthetic fertilizers. However, conventional manure application with >90% water and a low C:N ratio results in soil C loss to the atmosphere. Our hypothesis was to use biochar as a manure nutrient stabilizer that would slowly release nutrients to plants upon biochar-swine manure mixture application to soil. The objectives were to evaluate the impact of biochar-treated swine manure on soil total C, N, and plant-available macro and micronutrients in greenhouse-cultivated corn (Zea mays L.) and soybean (Glycine max (L.) Merr.). Neutral pH red oak (RO), highly alkaline autothermal corn stover (HAP), and mild acidic Fe-treated autothermal corn stover (HAPE) biomass were pyrolyzed to prepare biochars. Each biochar was surface-applied to swine manure at a 1:4 (wt/wt) ratio to generate mixtures of manure and respective biochars (MRO, MHAP, and MHAPE). Conventional manure (M) control and manure-biochar mixtures were then applied to the soil at a recommended rate. Corn and soybean were grown under these controls and treatments (S, M, MRO, MHAP, and MHAPE) to evaluate the manure-biochar impact on soil quality, plant biomass yield, and nutrient uptake. Soil OM significantly (<0.05) increased in all manure-biochar treatments; however, no change in soil pH or N was observed under any treatment. No difference in soil ammonium between treatments was identified. An increase (p<0.05) in soil nitrate under corn was observed for conventional manure (M) treatment. There was a significant decrease in soil M3-P for all manure-biochar treatments compared to the conventional M, but that did not impact plant nutrient uptake. No statistical difference in corn or soybean biomass yield or plant nutrient uptake was observed in the short, two-month experiment. Interestingly, manure-biochar application to soil significantly diluted the M3-extractable soil Cu and Zn concentrations. The results attribute that manure-biochar has the potential to be a better soil amendment than conventional manure application to the soil.

Author(s):  
Chumki Banik ◽  
Jacek Koziel ◽  
Darcy Bonds ◽  
Asheesh Singh ◽  
Mark Licht

The use of swine manure as a source of plant nutrients is one alternative to synthetic fertilizers. However, conventional manure application with >90% water and a low C:N ratio results in soil C loss to the atmosphere. Our hypothesis was to use biochar as a manure nutrient stabilizer that would slowly release nutrients to plants upon biochar-swine manure mixture application to soil. The objectives were to evaluate the impact of biochar-treated swine manure on soil total C, N, and plant-available macro and micronutrients in greenhouse-cultivated corn (Zea mays L.) and soybean (Glycine max (L.) Merr.). Neutral pH red oak (RO), highly alkaline autothermal corn stover (HAP), and mild acidic Fe-treated autothermal corn stover (HAPE) biomass were pyrolyzed to prepare biochars. Each biochar was surface-applied to swine manure at a 1:4 (biochar wt/manure wt) ratio to generate mixtures of manure and respective biochars (MRO, MHAP, and MHAPE). Conventional manure (M) control and manure-biochar mixtures were then applied to the soil at a recommended rate. Corn and soybean were grown under these controls and treatments (S, M, MRO, MHAP, and MHAPE) to evaluate the manure-biochar impact on soil quality, plant biomass yield, and nutrient uptake. Soil OM significantly (<0.05) increased in all manure-biochar treatments; however, no change in soil pH or N was observed under any treatment. No difference in soil ammonium between treatments was identified. There was a significant decrease in soil M3-P and soil NO3- for all manure-biochar treatments compared to the conventional M. However, the plant biomass nutrient concentrations were not significantly different from control manure. Moreover, an increasing trend of N and decreasing trend of P in the plant under all biochar-manure treatments than the controls were noted. This observation suggests that the presence of biochar is capable of influencing the soil N and P in such a way as not to lose those nutrients at the early growth stages of the plant. In general, no statistical difference in corn or soybean biomass yield and plant nutrient uptake for N, P, and K was observed. Interestingly, manure-biochar application to soil significantly diluted the M3-extractable soil Cu and Zn concentrations. The results attribute that manure-biochar has the potential to be a better soil amendment than conventional manure application to the soil.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 372
Author(s):  
Chumki Banik ◽  
Jacek A. Koziel ◽  
Darcy Bonds ◽  
Asheesh K. Singh ◽  
Mark A. Licht

The use of swine manure as a source of plant nutrients is one alternative to synthetic fertilizers. However, conventional manure application with >90% water and a low C:N ratio results in soil C loss to the atmosphere. Our hypothesis was to use biochar as a manure nutrient stabilizer that would slowly release nutrients to plants upon biochar-swine manure mixture application to soil. The objectives were to evaluate the impact of biochar-treated swine manure on soil total C, N, and plant-available macro- and micronutrients in greenhouse-cultivated corn (Zea mays L.) and soybean (Glycine max (L.) Merr.). Neutral pH red oak (RO), highly alkaline autothermal corn stover (HAP), and mild acidic Fe-treated autothermal corn stover (HAPE) biomass were pyrolyzed to prepare biochars. Each biochar was surface-applied to swine manure at a 1:4 (biochar wt/manure wt) ratio to generate mixtures of manure and respective biochars (MRO, MHAP, and MHAPE). Conventional manure (M) control and manure-biochar mixtures were then applied to the soil at a recommended rate. Corn and soybean were grown under these controls and treatments (S, M, MRO, MHAP, and MHAPE) to evaluate the manure-biochar impact on soil quality, plant biomass yield, and nutrient uptake. Soil organic matter significantly (<0.05) increased in all manure-biochar treatments; however, no change in soil pH or total N was observed under any treatment. No difference in soil ammonium between treatments was identified. There was a significant decrease in soil Mehlich3 (M3) P and KCl extractable soil NO3− for all manure-biochar treatments compared to the conventional M. However, the plant biomass nutrient concentrations were not significantly different from control manure. Moreover, an increasing trend of plant total N and decreasing trend of P in the plant under all biochar-manure treatments than the controls were noted. This observation suggests that the presence of biochar is capable of influencing the soil N and P in such a way as not to lose those nutrients at the early growth stages of the plant. In general, no statistical difference in corn or soybean biomass yield and plant nutrient uptake for N, P, and K was observed. Interestingly, manure-biochar application to soil significantly diluted the M3 extractable soil Cu and Zn concentrations. The results attribute that manure-biochar has the potential to be a better soil amendment than conventional manure application to the soil.


2006 ◽  
Vol 86 (5) ◽  
pp. 859-869 ◽  
Author(s):  
Francis Zvomuya ◽  
Francis J Larney ◽  
Olalekan O Akinremi ◽  
Reynald L Lemke ◽  
Vasile E Klaassen

Sustained plant nutrient a vailability on reclaimed wellsites is critical to the successful restoration of crop productivity. This study evaluated topsoil replacement depth (TRD) (0, 50, 100, and 150% of mandatory TRD) and organic amendment [beef cattle feedlot manure, compost derived from straw-bedded cattle feedlot manure, wheat (Triticum aestivumL.) straw, alfalfa (Medicago sativaL.) hay, and unamended control] effects on nutrient uptake by a wheat crop at three abandoned gas wellsites in south-central Alberta. Grain N uptake increased by 0.055 kg ha-1 for each percent increase in TRD, reflecting the corresponding linear increase in grain N concentration. Low carbon to nitrogen (C:N) ratio amendments, particularly compost and alfalfa, were the most effective for improving grain N concentration and uptake. Conversely, N concentration and uptake were lowest for the high C:N (53:1) wheat straw amendment. Reclamation programs should, therefore, consider incorporation of the low C:N alfalfa or compost in order to safeguard against N deficiency in the first 1–2 yr following reclamation. Our results also show that high P amendments, such as manure and compost, are better choices for improving P uptake by spring wheat. These results emphasize the importance of topsoil replacement and amendment quality (C:N ratio and P concentration) in ensuring adequate N and P supply in the 1–2 yr following reclamation. Based on this, compost appears to be the best single amendment for ensuring enhanced uptake of both N and P on reclaimed wellsites in the short term. Key words: Topsoil replacement; organic amendments; reclamation; nitrogen; phosphorus


2015 ◽  
Vol 4 (2) ◽  
pp. 193-203 ◽  
Author(s):  
Loïc Louison ◽  
◽  
Abdennebi Omrane ◽  
Harry Ozier-Lafontaine ◽  
Delphine Picart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document