scholarly journals GEM-Based Detectors for Direct Detection of Low-Mass WIMP, Solar Axions and Narrow Resonances (Quarks)

Author(s):  
Victor Parusov ◽  
Boris Ovchinnikov

Gas electron multipliers (GEMs) with wire (WGEMs) or metal electrodes (MGEMs), which don’t use any plastic insulators between electrodes are created. The chambers containing MGEMs (WGEMs) with pin-anodes are proposed as detectors for searching of spin-dependent interactions between Dark Matter (DM) particles and gases with nonzero-spin nuclei (H2, D2, 3He, 21Ne, CF4, CH4, etc.). In this paper, we present a review of such chambers. For investigation of the gas mixtures Ne+10%H2, H2 (D2) +3ppmTMAE, the chamber containing WGEM with pin-anode detection system was constructed. In this paper we present the results of an experimental study of these gaseous mixtures exited by an α - source. Mixture of Ar + 40 ppm C2H4 and mixture 50% Xe + 50%CF4 have been investigated. The spatial distributions of photoelectron clouds produced by primary scintillations on α- and β-particle tracks, as well as the distributions of photoelectron clouds due to photons from avalanches at the pin-anode, have been measured for the first time. In our experiments as another filling of the chambers for search of low-mas WIMP (<10 GeV/c2), solar neutrino and solar axions with spin-dependent interaction we propose to use the mixtures: D2 + 3ppmTMAE, 3He + 3%CH4, 21Ne + 10%H2, at pressure 10-17 bar. And in our experiment with liquid gases is used the mixtures with 19F (LAr + CF4, LXe + CF4) and mixture LCH4 + 40ppm TMAE. The time projection chamber (TPC) with the mixture D2 + 3ppmTMAE filling allow to search of spin-dependent interactions of solar axions and deuterium. As well as we present the detecting systems for search of narrow pp-resonances (quarks) in accelerators experiments.

2018 ◽  
Vol 174 ◽  
pp. 01008 ◽  
Author(s):  
J. G. Garza ◽  
S. Aune ◽  
F. Aznar ◽  
J. F. Castel ◽  
S. Cebrián ◽  
...  

The most compelling candidates for Dark Matter to day are WIMPs and axions. The applicability of gasesous Time Projection Chambers (TPCs) with Micromesh Gas Structures (Micromegas) to the search of these particles is explored within this work. Both particles would produce an extremely low rate at very low energies in particle detectors. Micromegas detectors can provide both low background rates and low energy threshold, due to the high granularity, radiopurity and uniformity of the readout. Small (few cm wide) Micromegas detectors are used to image the axion-induced x-ray signal expected in the CERN Axion Solar Telescope (CAST) experiment. We show the background levels obtained in CAST and the prospects to further reduce them to the values required by the Internation Axion Observatory (IAXO). We also present TREX-DM, a scaled-up version of the Micromegas used in axion research, but this time dedicated to the low-mass WIMP detection. TREX-DM is a high-pressure Micromegas-based TPC designed to host a few hundreds of grams of light nuclei (argon or neon) with energy thresholds potentially at the level of 100 eV. The detector is described in detail, as well as the results of the commissioning and characterization phase on surface. Besides, the background model of TREX-DM is presented, along with the anticipated sensitivity of this search, which could go beyond current experimental limits.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
David Curtin ◽  
Jack Setford

Abstract Dark matter could have a dissipative asymmetric subcomponent in the form of atomic dark matter (aDM). This arises in many scenarios of dark complexity, and is a prediction of neutral naturalness, such as the Mirror Twin Higgs model. We show for the first time how White Dwarf cooling provides strong bounds on aDM. In the presence of a small kinetic mixing between the dark and SM photon, stars are expected to accumulate atomic dark matter in their cores, which then radiates away energy in the form of dark photons. In the case of white dwarfs, this energy loss can have a detectable impact on their cooling rate. We use measurements of the white dwarf luminosity function to tightly constrain the kinetic mixing parameter between the dark and visible photons, for DM masses in the range 10−5–105 GeV, down to values of ϵ ∼ 10−12. Using this method we can constrain scenarios in which aDM constitutes fractions as small as 10−3 of the total dark matter density. Our methods are highly complementary to other methods of probing aDM, especially in scenarios where the aDM is arranged in a dark disk, which can make direct detection extremely difficult but actually slightly enhances our cooling constraints.


1970 ◽  
Vol 25 (12) ◽  
pp. 1374-1381 ◽  
Author(s):  
W. Kiefer ◽  
H. W. Schrötter

The Raman spectra of four molecules absorbing in the visible region (SnJ4, GeJ4, TiBr4, and TiJ4) are presented. They were excited with a quasi-continuous ruby laser and recorded with a special electronic detection system. Except for TiJ4, complete Raman spectra of crystal powder pellets could be obtained for the first time. The assignment reported by previous authors was confirmed by accurate polarization studies of solutions or pure liquid. The assignment is also in the solid state possible on the basis of Td point group symmetry. The fundamental vibrations of TiJ4 in solutions are: ν1 (A1) =162, ν2 (E) =51, ν3 (F2) =319 and ν4 (F2) Y = 67 cm-1


2018 ◽  
Vol 617 ◽  
pp. L2 ◽  
Author(s):  
A. Müller ◽  
M. Keppler ◽  
Th. Henning ◽  
M. Samland ◽  
G. Chauvin ◽  
...  

Context. The observation of planets in their formation stage is a crucial but very challenging step in understanding when, how, and where planets form. PDS 70 is a young pre-main sequence star surrounded by a transition disk, in the gap of which a planetary-mass companion has recently been discovered. This discovery represents the first robust direct detection of such a young planet, possibly still at the stage of formation. Aims. We aim to characterize the orbital and atmospheric properties of PDS 70 b, which was first identified on May 2015 in the course of the SHINE survey with SPHERE, the extreme adaptive-optics instrument at the VLT. Methods. We obtained new deep SPHERE/IRDIS imaging and SPHERE/IFS spectroscopic observations of PDS 70 b. The astrometric baseline now covers 6 yr, which allowed us to perform an orbital analysis. For the first time, we present spectrophotometry of the young planet which covers almost the entire near-infrared range (0.96–3.8 μm). We use different atmospheric models covering a large parameter space in temperature, log g, chemical composition, and cloud properties to characterize the properties of the atmosphere of PDS 70 b. Results. PDS 70 b is most likely orbiting the star on a circular and disk coplanar orbit at ~22 au inside the gap of the disk. We find a range of models that can describe the spectrophotometric data reasonably well in the temperature range 1000–1600 K and log g no larger than 3.5 dex. The planet radius covers a relatively large range between 1.4 and 3.7 RJ with the larger radii being higher than expected from planet evolution models for the age of the planet of 5.4 Myr. Conclusions. This study provides a comprehensive data set on the orbital motion of PDS 70 b, indicating a circular orbit and a motion coplanar with the disk. The first detailed spectral energy distribution of PDS 70 b indicates a temperature typical of young giant planets. The detailed atmospheric analysis indicates that a circumplanetary disk may contribute to the total planetflux.


2013 ◽  
Vol 52 (22) ◽  
pp. 7282-7288 ◽  
Author(s):  
Wan-Joong Kim ◽  
Sanghee Kim ◽  
Ae Rhan Kim ◽  
Dong Jin Yoo

Sign in / Sign up

Export Citation Format

Share Document