scholarly journals Augmenting Paraphrase Generation with Syntax Information using Graph Convolutional Networks

Author(s):  
Xiaoqiang Chi ◽  
Yang Xiang

Paraphrase generation is an important yet challenging task in NLP. Neural network-based approaches have achieved remarkable success in sequence-to-sequence(seq2seq) learning. Previous paraphrase generation work generally ignores syntactic information regardless of its availability, with the assumption that neural nets could learn such linguistic knowledge implicitly. In this work we make an endeavor to probe into the efficacy of explicit syntactic information for the task of paraphrase generation. Syntactic information can appear in the form of dependency trees which could be easily acquired from off-the-shelf syntactic parsers. Such tree structures could be conveniently encoded via graph convolutional networks(GCNs) to obtain more meaningful sentence representations, which could improve generated paraphrases. Through extensive experiments on four paraphrase datasets with different sizes and genres, we demonstrate the utility of syntactic information in neural paraphrase generation under the framework of seq2seq modeling. Specifically, our GCN-enhanced models consistently outperform their syntax-agnostic counterparts in multiple evaluation metrics.

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 566
Author(s):  
Xiaoqiang Chi ◽  
Yang Xiang

Paraphrase generation is an important yet challenging task in natural language processing. Neural network-based approaches have achieved remarkable success in sequence-to-sequence learning. Previous paraphrase generation work generally ignores syntactic information regardless of its availability, with the assumption that neural nets could learn such linguistic knowledge implicitly. In this work, we make an endeavor to probe into the efficacy of explicit syntactic information for the task of paraphrase generation. Syntactic information can appear in the form of dependency trees, which could be easily acquired from off-the-shelf syntactic parsers. Such tree structures could be conveniently encoded via graph convolutional networks to obtain more meaningful sentence representations, which could improve generated paraphrases. Through extensive experiments on four paraphrase datasets with different sizes and genres, we demonstrate the utility of syntactic information in neural paraphrase generation under the framework of sequence-to-sequence modeling. Specifically, our graph convolutional network-enhanced models consistently outperform their syntax-agnostic counterparts using multiple evaluation metrics.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaoqiang Chi ◽  
Yang Xiang

Paraphrase generation is an essential yet challenging task in natural language processing. Neural-network-based approaches towards paraphrase generation have achieved remarkable success in recent years. Previous neural paraphrase generation approaches ignore linguistic knowledge, such as part-of-speech information regardless of its availability. The underlying assumption is that neural nets could learn such information implicitly when given sufficient data. However, it would be difficult for neural nets to learn such information properly when data are scarce. In this work, we endeavor to probe into the efficacy of explicit part-of-speech information for the task of paraphrase generation in low-resource scenarios. To this end, we devise three mechanisms to fuse part-of-speech information under the framework of sequence-to-sequence learning. We demonstrate the utility of part-of-speech information in low-resource paraphrase generation through extensive experiments on multiple datasets of varying sizes and genres.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4115 ◽  
Author(s):  
Yuxia Li ◽  
Bo Peng ◽  
Lei He ◽  
Kunlong Fan ◽  
Zhenxu Li ◽  
...  

Roads are vital components of infrastructure, the extraction of which has become a topic of significant interest in the field of remote sensing. Because deep learning has been a popular method in image processing and information extraction, researchers have paid more attention to extracting road using neural networks. This article proposes the improvement of neural networks to extract roads from Unmanned Aerial Vehicle (UAV) remote sensing images. D-Linknet was first considered for its high performance; however, the huge scale of the net reduced computational efficiency. With a focus on the low computational efficiency problem of the popular D-LinkNet, this article made some improvements: (1) Replace the initial block with a stem block. (2) Rebuild the entire network based on ResNet units with a new structure, allowing for the construction of an improved neural network D-Linknetplus. (3) Add a 1 × 1 convolution layer before DBlock to reduce the input feature maps, reducing parameters and improving computational efficiency. Add another 1 × 1 convolution layer after DBlock to recover the required number of output channels. Accordingly, another improved neural network B-D-LinknetPlus was built. Comparisons were performed between the neural nets, and the verification were made with the Massachusetts Roads Dataset. The results show improved neural networks are helpful in reducing the network size and developing the precision needed for road extraction.


1991 ◽  
Vol 02 (03) ◽  
pp. 221-228 ◽  
Author(s):  
Lluís Garrido ◽  
Vicens Gaitan

We have tested a neural network (NN) technique as a method to determine the helicity of the τ particles in the process: e+e−→(Z0, γ*)→τ+τ−→(ρν)(ρν). It takes into account in a natural way the fact that both taus have different helicity and gives efficiencies comparable to the Bayesian method. We have found this “academic” example a nice way to introduce the analytical interpretation of the net output, showing that these neural nets techniques are equivalent to a Bayesian Decision Rule.


The implementation of neural network for the fault diagnosis is to improve the dependability of the proposed scheme by providing a more accurate, faster diagnosis relaying scheme as compared with the conventional relaying schemes. It is important to improve the relaying schemes regarding the shortcoming of the system and increase the dependability of the system by using the proposed relaying scheme. It also provide more accurate, faster relaying scheme. It also gives selective schemes as compared to conventional system. The techniques for survey employed some methods for the collection of data which involved a literature review of journals, from review on books, newspaper, magazines as well as field work, additional data was collected from researchers who are working in this field. To achieve optimum result we have to improve following things: (i) Training time, (ii) Selection of training vector, (iii) Upgrading of trained neural nets and integration of technologies. AI with its promise of adaptive training and generalization deserves scope. As a result we obtain a system which is more reliable, more accurate, and faster, has more dependability as well as it will selective according to the proposed relaying scheme as compare to the conventional relaying scheme. This system helps us to reduce the shortcoming like major faults which we faced in the complex system of transmission lines which will helps in reducing human effort, saves cost for maintaining the transmission system.


2020 ◽  
Author(s):  
Alessandro Lopopolo ◽  
Antal van den Bosch

Neural decoding of speech and language refers to the extraction of information regarding the stimulus and the mental state of subjects from recordings of their brain activity while performing linguistic tasks. Recent years have seen significant progress in the decoding of speech from cortical activity. This study instead focuses on decoding linguistic information. We present a deep parallel temporal convolutional neural network (1DCNN) trained on part-of-speech (PoS) classification from magnetoencephalography (MEG) data collected during natural language reading. The network is trained on data from 15 human subjects separately, and yields above-chance accuracies on test data for all of them. The level of PoS was targeted because it offers a clean linguistic benchmark level that represents syntactic information and abstracts away from semantic or conceptual representations.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042044
Author(s):  
Zuhua Dai ◽  
Yuanyuan Liu ◽  
Shilong Di ◽  
Qi Fan

Abstract Aspect level sentiment analysis belongs to fine-grained sentiment analysis, w hich has caused extensive research in academic circles in recent years. For this task, th e recurrent neural network (RNN) model is usually used for feature extraction, but the model cannot effectively obtain the structural information of the text. Recent studies h ave begun to use the graph convolutional network (GCN) to model the syntactic depen dency tree of the text to solve this problem. For short text data, the text information is not enough to accurately determine the emotional polarity of the aspect words, and the knowledge graph is not effectively used as external knowledge that can enrich the sem antic information. In order to solve the above problems, this paper proposes a graph co nvolutional neural network (GCN) model that can process syntactic information, know ledge graphs and text semantic information. The model works on the “syntax-knowled ge” graph to extract syntactic information and common sense information at the same t ime. Compared with the latest model, the model in this paper can effectively improve t he accuracy of aspect-level sentiment classification on two datasets.


Sign in / Sign up

Export Citation Format

Share Document