scholarly journals Dissecting Molecular Determinants of Mutational Escape Mechanisms in the SARS-CoV-2 Spike Protein Complexes with Nanobodies: Atomistic Simulations and Ensemble-Based Deep Mutational Scanning of Protein Stability and Binding Interactions

Author(s):  
Gennady Verkhivker ◽  
Steve Agajanian ◽  
Deniz Yasar Oztas ◽  
Grace Gupta

Structural and biochemical studies have recently revealed a range of rationally engineered nanobodies with efficient neutralizing capacity against SARS-CoV-2 virus and resilience against mutational escape. In this work, we combined atomistic simulations and conformational dynamics analysis with the ensemble-based mutational profiling of binding interactions for a diverse panel of SARS-CoV-2 spike complexes with nanobodies. Using this computational toolkit, we identified dynamic signatures and binding affinity fingerprints for the SARS-CoV-2 spike protein complexes with nanobodies Nb6 and Nb20, VHH E, a pair combination VHH E+U, a biparatopic nanobody VHH VE, and a combination of CC12.3 antibody and VHH V/W nanobodies. Through ensemble-based deep mutational profiling of stability and binding affinities, we identify critical hotspots and characterize molecular mechanisms of SARS-CoV-2 spike protein binding with single ultra-potent nanobodies, nanobody cocktails and biparatopic nanobodies. By quantifying dynamic and energetic determinants of the SARS-CoV-2 S binding with nanobodies, we also examine the effects of circulating variants and escaping mutations. We found that mutational escape mechanisms may be controlled through structurally and energetically adaptable binding hotspots located in the host receptor-accessible binding epitope that are dynamically coupled to the stability centers in the distant epitope targeted by VHH U/V/W nanobodies. The results of this study suggested a mechanism in which through cooperative dynamic changes, nanobody combinations and biparatopic nanobody can modulate the global protein response and induce the increased resilience to common escape mutants.

2021 ◽  
Author(s):  
Gennady Verkhivker ◽  
Steve Agajanian ◽  
Deniz Yasar Oztas ◽  
Grace Gupta

Structural and biochemical studies have recently revealed a range of rationally engineered nanobodies with efficient neutralizing capacity against SARS-CoV-2 virus and resilience against mutational escape. In this work, we combined atomistic simulations and conformational dynamics analysis with the ensemble-based mutational profiling of binding interactions for a diverse panel of SARS-CoV-2 spike complexes with nanobodies. Using this computational toolkit we identified dynamic signatures and binding affinity fingerprints for the SARS-CoV-2 spike protein complexes with nanobodies Nb6 and Nb20, VHH E, a pair combination VHH E+U, a biparatopic nanobody VHH VE, and a combination of CC12.3 antibody and VHH V/W nanobodies. Through ensemble-based deep mutational profiling of stability and binding affinities, we identify critical hotspots and characterize molecular mechanisms of SARS-CoV-2 spike protein binding with single ultra-potent nanobodies, nanobody cocktails and biparatopic nanobodies. By quantifying dynamic and energetic determinants of the SARS-CoV-2 S binding with nanobodies, we also examine the effects of circulating variants and escaping mutations. We found that mutational escape mechanisms may be controlled through structurally and energetically adaptable binding hotspots located in the host receptor-accessible binding epitope that are dynamically coupled to the stability centers in the distant epitope targeted by VHH U/V/W nanobodies. The results of this study suggested a mechanism in which through cooperative dynamic changes, nanobody combinations and biparatopic nanobody can modulate the global protein response and induce the increased resilience to common escape mutants.


2021 ◽  
Author(s):  
Fabrizio Pucci ◽  
Marianne Rooman

The understanding of the molecular mechanisms driving the fitness of the SARS-CoV-2 virus and its mutational evolution is still a critical issue. We built a simplified computational model, called SpikePro, to predict the SARS-CoV-2 fitness from the amino acid sequence and structure of the spike protein. It contains three contributions: the viral transmissibility predicted from the stability of the spike protein, the infectivity computed in terms of the affinity of the spike protein for the ACE2 receptor, and the ability of the virus to escape from the human immune response based on the binding affinity of the spike protein for a set of neutralizing antibodies. Our model reproduces well the available experimental, epidemiological and clinical data on the impact of variants on the biophysical characteristics of the virus. For example, it is able to identify circulating viral strains that, by increasing their fitness, recently became dominant at the population level. SpikePro is a useful instrument for the genomic surveillance of the SARS-CoV-2 virus, since it predicts in a fast and accurate way the emergence of new viral strains and their dangerousness. It is freely available in the GitHub repository github.com/3BioCompBio/SpikeProSARS-CoV-2.


2021 ◽  
Author(s):  
Gennady M Verkhivker ◽  
Steve Agajanian ◽  
Deniz Yazar Oztas ◽  
Grace Gupta

Structural and biochemical studies of the SARS-CoV-2 spike complexes with highly potent antibodies have revealed multiple conformation-dependent epitopes and a broad range of recognition modes linked to different neutralization responses In this study, we combined atomistic simulations with mutational and perturbation-based scanning approaches to perform in silico profiling of binding and allosteric propensities of the SARS-CoV-2 spike protein residues in complexes with B38, P2B-2F6, EY6A and S304 antibodies representing three different classes. Conformational dynamics analysis revealed that binding-induced modulation of soft modes can elicit the unique protein response to different classes of antibodies. Mutational scanning heatmaps and sensitivity analysis revealed the binding energy hotspots for different classes of antibodies that are consistent with the experimental deep mutagenesis, showing that differences in the binding affinity caused by global circulating variants in spike positions K417, E484 and N501 are relatively moderate and may not fully account for the observed antibody resistance effects. Through functional dynamics analysis and perturbation-response scanning of the SARS-CoV-2 spike protein residues in the unbound form and antibody-bound forms, we examine how antibody binding can modulate allosteric propensities of spike protein residues and determine allosteric hotspots that control signal transmission and global conformational changes. These results show that residues K417, E484, and N501 targeted by circulating mutations correspond to a group of versatile allosteric centers in which small perturbations can modulate collective motions, alter the global allosteric response and elicit binding resistance. We suggest that SARS-CoV-2 S protein may exploit plasticity of specific allosteric hotspots to generate escape mutants that alter response to antibody binding without compromising activity of the spike protein.


2021 ◽  
Author(s):  
Gennady Verkhivker ◽  
Steve Agajanian ◽  
Deniz Yazar Oztas ◽  
Grace Gupta

Structural and biochemical studies SARS-CoV-2 spike mutants with the enhanced infectivity have attracted significant attention and offered several mechanisms to explain the experimental data. In this study, we used an integrative computational approach to examine molecular mechanisms underlying functional effects of the D614G mutation by exploring atomistic modeling of the SARS-CoV-2 spike proteins as allosteric regulatory machines. We combined atomistic simulations, deep mutational scanning and sensitivity mapping together with the network-based community analysis to examine structures of the native and mutant SARS-CoV-2 spike proteins in different functional states. Conformational dynamics and analysis of collective motions in the SARS-CoV-2 spike proteins demonstrated that the D614 position anchors a key regulatory cluster that dictates functional transitions between open and closed states. Using mutational scanning and sensitivity analysis of the spike residues, we identified the evolution of stability hotspots in the SARS-CoV-2 spike structures of the mutant trimers. The results offer support to the reduced shedding mechanism of as a driver of the increased infectivity triggered by the D614G mutation. By employing the landscape-based network community analysis of the SARS-CoV-2 spike proteins, our results revealed that the D614G mutation can promote the increased number of stable communities in the open form by enhancing the stability of the inter-domain interactions. This study provides atomistic view of the interactions and stability hotspots in the SARS-CoV-2 spike proteins, offering a useful insight into the molecular mechanisms of the D614G mutation that can exert its functional effects through allosterically induced changes on stability of the residue interaction networks.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 935
Author(s):  
Fabrizio Pucci ◽  
Marianne Rooman

The understanding of the molecular mechanisms driving the fitness of the SARS-CoV-2 virus and its mutational evolution is still a critical issue. We built a simplified computational model, called SpikePro, to predict the SARS-CoV-2 fitness from the amino acid sequence and structure of the spike protein. It contains three contributions: the inter-human transmissibility of the virus predicted from the stability of the spike protein, the infectivity computed in terms of the affinity of the spike protein for the ACE2 receptor, and the ability of the virus to escape from the human immune response based on the binding affinity of the spike protein for a set of neutralizing antibodies. Our model reproduces well the available experimental, epidemiological and clinical data on the impact of variants on the biophysical characteristics of the virus. For example, it is able to identify circulating viral strains that, by increasing their fitness, recently became dominant at the population level. SpikePro is a useful, freely available instrument which predicts rapidly and with good accuracy the dangerousness of new viral strains. It can be integrated and play a fundamental role in the genomic surveillance programs of the SARS-CoV-2 virus that, despite all the efforts, remain time-consuming and expensive.


2021 ◽  
Author(s):  
Gennady M. Verkhivker ◽  
Steve Agajanian ◽  
Deniz Yazar Oztas ◽  
Grace Gupta

AbstractIn this study, we used an integrative computational approach focused on comparative perturbation-based modeling to examine molecular mechanisms and determine functional signatures underlying role of functional residues in the SARS-CoV-2 spike protein that are targeted by novel mutational variants and antibody-escaping mutations. Atomistic simulations and functional dynamics analysis are combined with alanine scanning and mutational sensitivity profiling for the SARS-CoV-2 spike protein complexes with the ACE2 host receptor are REGN-COV2 antibody cocktail (REG10987+REG10933). Using alanine scanning and mutational sensitivity analysis, we have shown that K417, E484 and N501 residues correspond to key interacting centers with a significant degree of structural and energetic plasticity that allow mutants in these positions to afford the improved binding affinity with ACE2. Through perturbation-based network modeling and community analysis of the SARS-CoV-2 spike protein complexes with ACE2 we demonstrate that E406, N439, K417 and N501 residues serve as effector centers of allosteric interactions and anchor major inter-molecular communities that mediate long-range communication in the complexes. The results provide support to a model according to which mutational variants and antibody-escaping mutations constrained by the requirements for host receptor binding and preservation of stability may preferentially select structurally plastic and energetically adaptable allosteric centers to differentially modulate collective motions and allosteric interactions in the complexes with the ACE2 enzyme and REGN-COV2 antibody combination. This study suggests that SARS-CoV-2 spike protein may function as a versatile and functionally adaptable allosteric machine that exploits plasticity of allosteric regulatory centers to fine-tune response to antibody binding without compromising activity of the spike protein.


2018 ◽  
Vol 2 (1) ◽  
pp. 107-119
Author(s):  
Hyun-Seo Kang ◽  
Michael Sattler

In recent years, a dynamic view of the structure and function of biological macromolecules is emerging, highlighting an essential role of dynamic conformational equilibria to understand molecular mechanisms of biological functions. The structure of a biomolecule, i.e. protein or nucleic acid in solution, is often best described as a dynamic ensemble of conformations, rather than a single structural state. Strikingly, the molecular interactions and functions of the biological macromolecule can then involve a shift between conformations that pre-exist in such an ensemble. Upon external cues, such population shifts of pre-existing conformations allow gradually relaying the signal to the downstream biological events. An inherent feature of this principle is conformational dynamics, where intrinsically disordered regions often play important roles to modulate the conformational ensemble. Unequivocally, solution-state NMR spectroscopy is a powerful technique to study the structure and dynamics of such biomolecules in solution. NMR is increasingly combined with complementary techniques, including fluorescence spectroscopy and small angle scattering. The combination of these techniques provides complementary information about the conformation and dynamics in solution and thus affords a comprehensive description of biomolecular functions and regulations. Here, we illustrate how an integrated approach combining complementary techniques can assess the structure and dynamics of proteins and protein complexes in solution.


Sign in / Sign up

Export Citation Format

Share Document