scholarly journals Adult Human Neurogenesis: Early Studies Clarify Recent Controversies and Go Further

Author(s):  
Adriano Barreto Nogueira ◽  
Hillary Sayuri Ramires Hoshino ◽  
Natalia Camargo Ortega ◽  
Bruna Grazielle Silva dos Santos ◽  
Manoel Jacobsen Teixeira

Evidence on adult mammalian neurogenesis and scarce studies with human brains led to the idea that adult human neurogenesis occurs in the subgranular zone (SGZ) of the dentate gyrus and in the subventricular zone (SVZ). However, findings published from 2018 rekindled controversies on adult human SGZ neurogenesis. We systematically reviewed studies published during the first decade of characterization of adult human neurogenesis (1994–2004) – when the two-neurogenic-niche concept in humans was consolidated – and compared with further studies. The synthesis of both periods is that adult human neurogenesis occurs in an intensity ranging from practically zero to a level comparable to adult mammalian neurogenesis in general, which is the prevailing conclusion. Nonetheless, Bernier and colleagues showed in 2000 intriguing indications of adult human neurogenesis in a broad area including the limbic system. Likewise, we later showed evidence that limbic and hypothalamic structures surrounding the circumventricular organs form a continuous zone expressing neurogenesis markers encompassing the SGZ and SVZ. The conclusion is that publications from 2018 on adult human neurogenesis did not bring novel findings on location of neurogenic niches. Rather, we expect that the search of neurogenesis beyond the canonical adult mammalian neurogenic niches will confirm our indications that adult human neurogenesis is orchestrated in a broad brain area. We predict that this approach may, for example, clarify that human hippocampal neurogenesis occurs mostly in the CA1-subiculum zone and that the previously identified human rostral migratory stream arising from the SVZ is indeed the column of the fornix expressing neurogenesis markers.

2000 ◽  
Vol 37 (1) ◽  
pp. 67-78 ◽  
Author(s):  
Patrick J. Bernier ◽  
Jonathan Vinet ◽  
Martine Cossette ◽  
André Parent

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Sophia F A M de Sonnaville ◽  
Miriam E van Strien ◽  
Jinte Middeldorp ◽  
Jacqueline A Sluijs ◽  
Simone A van den Berge ◽  
...  

Abstract Neurogenesis continues throughout adulthood in specialized regions of the brain. One of these regions is the subventricular zone. During brain development, neurogenesis is regulated by a complex interplay of intrinsic and extrinsic cues that control stem-cell survival, renewal and cell lineage specification. Cerebrospinal fluid (CSF) is an integral part of the neurogenic niche in development as it is in direct contact with radial glial cells, and it is important in regulating proliferation and migration. Yet, the effect of CSF on neural stem cells in the subventricular zone of the adult human brain is unknown. We hypothesized a persistent stimulating effect of ventricular CSF on neural stem cells in adulthood, based on the literature, describing bulging accumulations of subventricular cells where CSF is in direct contact with the subventricular zone. Here, we show by immunohistochemistry on post-mortem adult human subventricular zone sections that neural stem cells are in close contact with CSF via protrusions through both intact and incomplete ependymal layers. We are the first to systematically quantify subventricular glial nodules denuded of ependyma and consisting of proliferating neural stem and progenitor cells, and showed that they are present from foetal age until adulthood. Neurosphere, cell motility and differentiation assays as well as analyses of RNA expression were used to assess the effects of CSF of adult humans on primary neural stem cells and a human immortalized neural stem cell line. We show that human ventricular CSF increases proliferation and decreases motility of neural stem cells. Our results also indicate that adult CSF pushes neural stem cells from a relative quiescent to a more active state and promotes neuronal over astrocytic lineage differentiation. Thus, CSF continues to stimulate neural stem cells throughout aging.


2018 ◽  
Vol 301 (9) ◽  
pp. 1570-1584 ◽  
Author(s):  
Dailiany Orechio ◽  
Bruna Andrade Aguiar ◽  
Giovanne Baroni Diniz ◽  
Jackson Cioni Bittencourt ◽  
Carlos A. S. Haemmerle ◽  
...  

2021 ◽  
Vol 22 (14) ◽  
pp. 7664
Author(s):  
Katarzyna Bartkowska ◽  
Krzysztof Turlejski ◽  
Beata Tepper ◽  
Leszek Rychlik ◽  
Peter Vogel ◽  
...  

Shrews are small animals found in many different habitats. Like other mammals, adult neurogenesis occurs in the subventricular zone of the lateral ventricle (SVZ) and the dentate gyrus (DG) of the hippocampal formation. We asked whether the number of new generated cells in shrews depends on their brain size. We examined Crocidura russula and Neomys fodiens, weighing 10–22 g, and Crocidura olivieri and Suncus murinus that weigh three times more. We found that the density of proliferated cells in the SVZ was approximately at the same level in all species. These cells migrated from the SVZ through the rostral migratory stream to the olfactory bulb (OB). In this pathway, a low level of neurogenesis occurred in C. olivieri compared to three other species of shrews. In the DG, the rate of adult neurogenesis was regulated differently. Specifically, the lowest density of newly generated neurons was observed in C. russula, which had a substantial number of new neurons in the OB compared with C. olivieri. We suggest that the number of newly generated neurons in an adult shrew’s brain is independent of the brain size, and molecular mechanisms of neurogenesis appeared to be different in two neurogenic structures.


Glia ◽  
1994 ◽  
Vol 10 (3) ◽  
pp. 211-226 ◽  
Author(s):  
Scott R. Whittemore ◽  
Joseph T. Neary ◽  
Naomi Kleitman ◽  
Henry R. Sanon ◽  
Adelaida Benigno ◽  
...  

2015 ◽  
Vol 134 (1) ◽  
pp. 156-172 ◽  
Author(s):  
Gangadharappa Harish ◽  
Anita Mahadevan ◽  
Nupur Pruthi ◽  
Sreelakshmi K. Sreenivasamurthy ◽  
Vinuth N. Puttamallesh ◽  
...  

2022 ◽  
Vol 13 ◽  
Author(s):  
Francisco Javier Fuentealba-Villarroel ◽  
Josué Renner ◽  
Arlete Hilbig ◽  
Oliver J. Bruton ◽  
Alberto A. Rasia-Filho

The human posteromedial cortex (PMC), which includes the precuneus (PC), represents a multimodal brain area implicated in emotion, conscious awareness, spatial cognition, and social behavior. Here, we describe the presence of Nissl-stained elongated spindle-shaped neurons (suggestive of von Economo neurons, VENs) in the cortical layer V of the anterior and central PC of adult humans. The adapted “single-section” Golgi method for postmortem tissue was used to study these neurons close to pyramidal ones in layer V until merging with layer VI polymorphic cells. From three-dimensional (3D) reconstructed images, we describe the cell body, two main longitudinally oriented ascending and descending dendrites as well as the occurrence of spines from proximal to distal segments. The primary dendritic shafts give rise to thin collateral branches with a radial orientation, and pleomorphic spines were observed with a sparse to moderate density along the dendritic length. Other spindle-shaped cells were observed with straight dendritic shafts and rare branches or with an axon emerging from the soma. We discuss the morphology of these cells and those considered VENs in cortical areas forming integrated brain networks for higher-order activities. The presence of spindle-shaped neurons and the current discussion on the morphology of putative VENs address the need for an in-depth neurochemical and transcriptomic characterization of the PC cytoarchitecture. These findings would include these spindle-shaped cells in the synaptic and information processing by the default mode network and for general intelligence in healthy individuals and in neuropsychiatric disorders involving the PC in the context of the PMC functioning.


Sign in / Sign up

Export Citation Format

Share Document