dendritic length
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 19)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Vol 13 ◽  
Author(s):  
Francisco Javier Fuentealba-Villarroel ◽  
Josué Renner ◽  
Arlete Hilbig ◽  
Oliver J. Bruton ◽  
Alberto A. Rasia-Filho

The human posteromedial cortex (PMC), which includes the precuneus (PC), represents a multimodal brain area implicated in emotion, conscious awareness, spatial cognition, and social behavior. Here, we describe the presence of Nissl-stained elongated spindle-shaped neurons (suggestive of von Economo neurons, VENs) in the cortical layer V of the anterior and central PC of adult humans. The adapted “single-section” Golgi method for postmortem tissue was used to study these neurons close to pyramidal ones in layer V until merging with layer VI polymorphic cells. From three-dimensional (3D) reconstructed images, we describe the cell body, two main longitudinally oriented ascending and descending dendrites as well as the occurrence of spines from proximal to distal segments. The primary dendritic shafts give rise to thin collateral branches with a radial orientation, and pleomorphic spines were observed with a sparse to moderate density along the dendritic length. Other spindle-shaped cells were observed with straight dendritic shafts and rare branches or with an axon emerging from the soma. We discuss the morphology of these cells and those considered VENs in cortical areas forming integrated brain networks for higher-order activities. The presence of spindle-shaped neurons and the current discussion on the morphology of putative VENs address the need for an in-depth neurochemical and transcriptomic characterization of the PC cytoarchitecture. These findings would include these spindle-shaped cells in the synaptic and information processing by the default mode network and for general intelligence in healthy individuals and in neuropsychiatric disorders involving the PC in the context of the PMC functioning.


2021 ◽  
Vol 118 (49) ◽  
pp. e2022546118
Author(s):  
Melanie J. Grubisha ◽  
Tao Sun ◽  
Leanna Eisenman ◽  
Susan L. Erickson ◽  
Shinny-yi Chou ◽  
...  

Normally, dendritic size is established prior to adolescence and then remains relatively constant into adulthood due to a homeostatic balance between growth and retraction pathways. However, schizophrenia is characterized by accelerated reductions of cerebral cortex gray matter volume and onset of clinical symptoms during adolescence, with reductions in layer 3 pyramidal neuron dendritic length, complexity, and spine density identified in multiple cortical regions postmortem. Nogo receptor 1 (NGR1) activation of the GTPase RhoA is a major pathway restricting dendritic growth in the cerebral cortex. We show that the NGR1 pathway is stimulated by OMGp and requires the Rho guanine nucleotide exchange factor Kalirin-9 (KAL9). Using a genetically encoded RhoA sensor, we demonstrate that a naturally occurring missense mutation in Kalrn, KAL-PT, that was identified in a schizophrenia cohort, confers enhanced RhoA activitation in neuronal dendrites compared to wild-type KAL. In mice containing this missense mutation at the endogenous locus, there is an adolescent-onset reduction in dendritic length and complexity of layer 3 pyramidal neurons in the primary auditory cortex. Spine density per unit length of dendrite is unaffected. Early adult mice with these structural deficits exhibited impaired detection of short gap durations. These findings provide a neuropsychiatric model of disease capturing how a mild genetic vulnerability may interact with normal developmental processes such that pathology only emerges around adolescence. This interplay between genetic susceptibility and normal adolescent development, both of which possess inherent individual variability, may contribute to heterogeneity seen in phenotypes in human neuropsychiatric disease.


Author(s):  
Yasmina B. Martin ◽  
Pilar Negredo ◽  
Carlos Avendaño

AbstractNervous systems respond with structural changes to environmental changes even in adulthood. In recent years, experience-dependent structural plasticity was shown not to be restricted to the cerebral cortex, as it also occurs at subcortical and even peripheral levels. We have previously shown that two populations of trigeminal nuclei neurons, trigeminothalamic barrelette neurons of the principal nucleus (Pr5), and intersubnuclear neurons in the caudal division of the spinal trigeminal nucleus (Sp5C) that project to Pr5 underwent morphometric and topological changes in their dendritic trees after a prolonged total or partial loss of afferent input from the vibrissae. Here we examined whether and what structural alterations could be elicited in the dendritic trees of the same cell populations in young adult rats after being exposed for 2 months to an enriched environment (EE), and how these changes evolved when animals were returned to standard housing for an additional 2 months. Neurons were retrogradely labeled with BDA delivered to, respectively, the ventral posteromedial thalamic nucleus or Pr5. Fully labeled cells were digitally reconstructed with Neurolucida and analyzed with NeuroExplorer. EE gave rise to increases in dendritic length, number of trees and branching nodes, spatial expansion of the trees, and dendritic spines, which were less pronounced in Sp5C than in Pr5 and differed between sides. In Pr5, these parameters returned, but only partially, to control values after EE withdrawal. These results underscore a ubiquity of experience-dependent changes that should not be overlooked when interpreting neuroplasticity and developing plasticity-based therapeutic strategies.


2021 ◽  
Author(s):  
Yasmina B Martin ◽  
Pilar Negredo ◽  
Carlos Avendaño

Abstract Nervous systems respond with structural changes to environmental changes even in adulthood. In recent years it has been shown that experience-dependent structural plasticity is not restricted to the cerebral cortex, but also occurs at subcortical and even peripheral levels. We have previously shown that two populations of trigeminal nuclei neurons, trigeminothalamic barrelette neurons of the principal nucleus (Pr5), and intersubnuclear neurons in the caudal division of the spinal trigeminal nucleus (Sp5C) that project to Pr5 underwent morphometric and topological changes in their dendritic trees after a prolonged total or partial loss of afferent input from the vibrissae. Here we examined whether and what structural alterations could be elicited in the dendritic trees of the same cell populations in young adult rats after being exposed for two months to an enriched environment (EE), and how these changes evolved when animals were returned to standard housing for an additional two months. Neurons were retrogradely labeled with dextran amine delivered to, respectively, the ventral posteromedial thalamic nucleus or Pr5. Fully labeled cells were digitally reconstructed with Neurolucida and analyzed with NeuroExplorer. EE gave rise to increases in dendritic length, number of trees and branching nodes, spatial expansion of the trees, and dendritic spines, which were less pronounced in Sp5C than in Pr5 and differed between sides. In Pr5 these parameters returned, but only partially, to control values after EE withdrawal. These results underscore a ubiquity of experience-dependent changes that should not be overlooked when interpreting neuroplasticity and developing plasticity-based therapeutic strategies.


2021 ◽  
Author(s):  
MJ Grubisha ◽  
T Sun ◽  
SL Erickson ◽  
L Eisenman ◽  
S Chou ◽  
...  

ABSTRACTNormally, dendritic size is established prior to adolescence then remains relatively constant into adulthood due to a homeostatic balance between growth and retraction pathways. However, schizophrenia is characterized by accelerated reductions of cerebral cortex gray matter volume and onset of clinical symptoms during adolescence, with reductions in layer 3 pyramidal neuron dendritic length, complexity, and spine density identified in multiple cortical regions postmortem. Nogo receptor 1 (NGR1) activation of the GTPase RhoA is a major pathway restricting dendritic growth in the cerebral cortex. We show that the NGR1 pathway is stimulated by OMGp and requires the Rho guanine nucleotide exchange factor, Kalirin-9 (KAL9). Using a genetically encoded RhoA sensor, we demonstrate that a naturally occurring missense mutation in Kalrn, KAL-PT, that was identified in a schizophrenia cohort, confers enhanced RhoA activitation in neuronal dendrites compared to wildtype KAL. In mice containing this missense mutation at the endogenous locus there is an adolescent-onset reduction in dendritic length and complexity of layer 3 pyramidal neurons in the primary auditory cortex. Tissue density of dendritic spines was also reduced. Early adult mice with these structural deficts exhibited impaired detection of short gap durations. These findings provide a neuropsychiatric model of disease capturing how a mild genetic vulnerability may interact with normal developmental processes such that pathology only emerges around adolescence. This interplay between genetic susceptibility and normal adolescent development, both of which possess inherent individual variability, may contribute to heterogeneity seen in phenotypes in human neuropsychiatric disease.SIGNIFICANCE STATEMENTDendrites are long branching processes on neurons that contain small processes called spines that are the site of connections with other neurons, establishing cortical circuitry. Dendrites have long been considered stable structures, with rapid growth prior to adolescence followed by maintenance of size into adulthood. However, schizophrenia is characterized by accelerated reductions of cortical gray matter volume and onset of clinical symptoms during adolescence, with reductions in dendritic length present when examined after death. We show that dendrites retain the capacity for regression, and that a mild genetic vulnerability in a regression pathway leads to onset of structural impairments in previously formed dendrites across adolescence. This suggests that targeting specific regression pathways could potentially lead to new therapeutics for schizophrenia.


Author(s):  
Lu Xiao ◽  
Junyan Yan ◽  
Di Feng ◽  
Shasha Ye ◽  
Ting Yang ◽  
...  

Objective: To investigate the role of TLR4 on the microglia activation in the pre-frontal cortex, which leads to autism-like behavior of the offspring induced by maternal lipopolysaccharide (LPS) exposure.Methods: Pregnant TLR4−/− (knockout, KO) and WT (wild type, WT) dams were intraperitoneally injected with LPS or PBS, respectively. The levels of TNFα, IL-1β, and IL-6 in the maternal serum and fetal brain were assessed with ELISA following LPS exposure. The gestation period, litter size and weight of the offspring were evaluated. Three-chamber sociability test, open field test and olfactory habituation/dishabituation test were used to assess the offspring's autism-like behavior at 7 weeks of age. Western blotting was performed to examine the levels of TLR4, Phospho-NFκB p65, IKKα, IBA-1, iNOS, Arg-1, C3, CR3A, NMDAR2A, and Syn-1 expression in the pre-frontal cortex. The morphological changes in the microglia, the distribution and expression of TLR4 were observed by immunofluorescence staining. Golgi-Cox staining was conducted to evaluate the dendritic length and spine density of the neurons in 2-week-old offspring.Results: Maternal LPS stimulation increased serum TNFα and IL-6, as well as fetal brain TNFα in the WT mice. The litter size and the weight of the WT offspring were significantly reduced following maternal LPS treatment. LPS-treated WT offspring had lower social and self-exploration behavior, and greater anxiety and repetitive behaviors. The protein expression levels of TLR4 signaling pathways, including TLR4, Phospho-NFκB p65, IKKα, and IBA-1, iNOS expression were increased in the LPS-treated WT offspring, whereas Arg-1 was decreased. Maternal LPS treatment resulted in the significant reduction in the levels of the synaptic pruning-related proteins, C3 and CR3A. Moreover, the neuronal dendritic length and spine density, as well as the expression levels of the synaptic plasticity-related proteins, NMDAR2A and Syn-1 were reduced in the WT offspring; however, gestational LPS exposure had no effect on the TLR4−/− offspring.Conclusion: Activation of TLR4 signaling pathway following maternal LPS exposure induced the abnormal activation of microglia, which in turn was involved in excessive synaptic pruning to decrease synaptic plasticity in the offspring. This may be one of the reasons for the autism-like behavior in the offspring mice.


2021 ◽  
Author(s):  
Alvin T.S. Brodin ◽  
Sarolta Gabulya ◽  
Katrin Wellfelt ◽  
Tobias E. Karlsson

AbstractSleep is essential for long term memory function. However the neuroanatomical consequences of sleep loss are disputed. Sleep deprivation has been reported to cause both decreases and increases of dendritic spine density. Here we use Thy1-GFP expressing transgenic mice to investigate the effects of acute sleep deprivation on the dendritic architecture of hippocampal CA1 pyramidal neurons. We found that five hours of sleep deprivation had no effect on either dendritic length or dendritic spine density. Our work suggests that no major neuroanatomical changes result from one episode of sleep deprivation.


2021 ◽  
Author(s):  
Linda Douw ◽  
Ida A. Nissen ◽  
Sophie M.D.D. Fitzsimmons ◽  
Fernando A.N. Santos ◽  
Arjan Hillebrand ◽  
...  

ABSTRACTTemporal lobe epilepsy patients are heterogeneous regarding cognitive functioning, with predominant risk of memory deficits. Despite major advances within cellular neuroscience, neuroimaging, and neuropsychology, it remains challenging to integrate memory performance with cellular characteristics and brain network topology. In a unique dataset, we investigate these cross-scale individual differences. Preoperatively, drug-resistant temporal lobe epilepsy patients (n = 31, 15 females) underwent functional magnetic resonance imaging, magnetoencephalography and/or memory testing. Macro-scale network centrality was determined, since the number of integrative functional connections a region has is crucial for memory functioning. Subsequently, non-pathological cortical tissue resected from the lateral middle temporal gyrus (default mode network) was used for single cell morphological (total dendritic length) and electrophysiological patch-clamp analysis (action potential rise speed). We expected greater macro-scale centrality to relate to longer micro-scale dendritic length and faster action potentials, and greater centrality to relate to better memory performance. Greater macro-scale centrality correlated with longer dendritic length and faster action potentials (canonical correlation coefficient = 0.329, p < 0.001). Moreover, greater macro-scale centrality was related to better memory performance (canonical correlation coefficient = 0.234, p = 0.013). We conclude that more complex neuronal morphology and faster action potential kinetics are mirrored by more integrative functional network topology of the middle temporal gyrus, which in turn is associated with better memory functioning. Thus, our cross-scale analyses reveal a significant relationship between cellular and imaging measures of network topology in the brain, which support cognitive performance in these patients.


Author(s):  
Funmilayo E. Olopade ◽  
Omowumi M. Femi-Akinlosotu ◽  
Adejoke J. Adekanmbi ◽  
Oghenefejiro O. Ighogboja ◽  
Matthew T. Shokunbi

2020 ◽  
Author(s):  
Chiung-Ya Chen ◽  
Yu-Chi Chou ◽  
Yi-Ping Hsueh

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes Coronavirus disease 2019 (COVID-19) exhibits two major variants based on mutations of its spike protein, i.e., the D614 prototype and G614 variant. Although neurological symptoms have been frequently reported in patients, it is still unclear whether SARS-CoV-2 impairs neuronal activity or function. Here, we show that expression of both D614 and G614 spike proteins is sufficient to induce phenotypes of impaired neuronal morphology, including defective dendritic spines and shortened dendritic length. Using spike protein-specific monoclonal antibodies, we found that D614 and G614 spike proteins show differential S1/S2 cleavage and cell fusion efficiency. Our findings provide an explanation for higher transmission of the G614 variant and the neurological manifestations observed in COVID-19 patients.


Sign in / Sign up

Export Citation Format

Share Document