scholarly journals Immuno-Efficacy of Multi-Epitope Chimeric Peptides Against Foot and Mouth Disease Virus: Potential Vaccine Candidates for Newly Emerged Serotype O and A

Author(s):  
SALMA AKTER ◽  
Md. Shaminur Rahman ◽  
M. Rafiul Islam ◽  
Masuda Akther ◽  
Mafruha Marjia ◽  
...  

Artificially designed, chimeric peptide-based recombinant vaccines are novel approaches to combat the phylogenetically diverse Foot and Mouth Disease (FMD) Virus (FMDV) strains. Among seven distinct serotypes, only serotype O and A are dominantly circulating in Bangladesh and neighbouring countries of Asia, where transboundary transmission, recurrent outbreaks and emergence of novel lineages FMDV are highly prevalent. The objective of this study was to develop multi-epitope recombinant peptides, procuring immunogenicity against circulating diverse subtypes of FMDV serotype O and A. Two chimeric peptides, named B1 (41.0 kDa) and B3 (39.3 kDa), have been designed to incorporate potential B-cell and T-cell epitopes selected from multiple FMDV strains, including previously reported and newly emerged sub-lineages. After expression, characterization and immunization of guineapigs with considerable antigen load of B1 and B3 followed by the serological assays revealed the significant protective immunogenicity, developed from the higher (100 µg) doses of both antigens, against most of the currently prevalent serotype O and A strains of FMDV. The efficient expression, antigenic stability, and multivalent immunogenic potency of the chimeric peptides strongly indicate their credibility as novel vaccine candidates for FMDV serotypes O and A circulating in Bangladesh and surrounding territories.

2019 ◽  
Vol 12 (2) ◽  
pp. 190-197 ◽  
Author(s):  
Emad Diab ◽  
Abdel-Hamid I. Bazid ◽  
Mohamed Fawzy ◽  
Wagdy R. El-Ashmawy ◽  
Adel A. Fayed ◽  
...  

Background and Aim: Foot-and-mouth disease virus (FMDV) serotypes A, O and South African Territories (SAT2) are endemic in Egypt; each is presented by a number of partially related topotypes and lineages, depending on their geographical origin. Continuous mutations and the emergence of new topotypes that lead to occasional vaccination failures were frequently recorded, so this study aimed to genetically characterize the circulating FMD virus strains in Egypt during 2013 and 2014 outbreaks, focusing on amino acids variations in VP1 region. Materials and Methods: A total of 51 oral tissue samples were collected from cattle and buffaloes in 13 farms, and 38 individual cases showed clinical signs suspected to be FMD in six Egyptian Governorates (Cairo, Giza, Qaliubia, Fayoum, Sharquia, and Assiut). FMDV in collected samples was characterized by reverse transcription-polymerase chain reaction (RT-PCR) amplification of full VP1 region, sequencing, and phylogenetic analysis. Results: Out of 51 samples, 44 (86.27%) were positive by RT-PCR using universal primers. Serotype O was predominant and detected in 31 samples (70.45%), serotype A was detected in 9 samples (20.45%), and then serotype SAT2 was identified in 4 samples (9.10%). Sequencing and phylogenetic analysis of VP1 demonstrated clustering of serotype O, A, and SAT2 in EA-3 topotype, ASIA topotype, and topotype VII, respectively. Serotype O is closely related to O/SUD/8/2008 with 94.6% identity but showed 14.6% differences from vaccine strain (O/PanAsia-2) of ME-SA topotype. Furthermore, Serotype A and SAT2 were closely related to recent circulating Egyptian isolates and vaccine strains type A/EGY/1/2012 (Asia topotype, lineage Iran-05) with identity 96.4% and vaccine strain of SAT2/EGY/A/2012 (topotype VII, lineage SAT2/VII/ALX-12) with identity 95.3%, respectively. Conclusion: The present study recommended further studies of serotype O to determine the immunogenic relationship between the vaccine strain and the new strains to attain maximum protection against circulating viruses.


2007 ◽  
Vol 73 (22) ◽  
pp. 7177-7184 ◽  
Author(s):  
Somjai Kamolsiripichaiporn ◽  
Supatsak Subharat ◽  
Romphruke Udon ◽  
Panithan Thongtha ◽  
Suphachai Nuanualsuwan

ABSTRACT The heat resistance of foot-and-mouth disease virus (FMDV) strains isolated from outbreaks in Thailand was investigated in phosphate-buffered saline (PBS) at 50, 60, 70, 80, 90, and 100°C. The first-order kinetic model fitted most of the observed linear inactivation curves. The ranges of decimal-reduction time (D value) of FMDV strains at 50, 60, 70, 80, 90, and 100°C were 732 to 1,275 s, 16.37 to 42.00 s, 6.06 to 10.87 s, 2.84 to 5.99 s, 1.65 to 3.18 s, and 1.90 to 2.94 s, respectively. The heat resistances of FMDV strains at lower temperature (50°C) were not serotype specific. The effective inactivating temperature is approximately 60°C. Heat resistances of FMDV strains at 90 and 100°C were not statistically different (P > 0.05), while the FMDV serotype O (OPN) appeared to be the most heat resistant at 60 to 80°C. The other observed inactivation curves were linear with shoulder or tailing (biphasic curves). The shoulder effect was mostly observed at 90 and 100°C, while the tailing effect was mostly observed at 50 to 80°C. The adjusted D values in the case of shoulder and tailing effects did not affect the overall estimated heat resistance of these FMDV strains, so even unadjusted D values of deviant inactivation curves were legitimate. The z values of FMDV serotypes O, A, and Asia 1 were 21.78 to 23.26, 20.75 to 22.79, and 19.87°C, respectively. The z values of FMDV strains studied were not statistically significantly different (P > 0.05). The results of this study indicated that the heat resistance in PBS of FMDV strains from Thailand was much less than had been reported for foreign epidemic FMDV strains.


Author(s):  
Joseph M. Genchwere ◽  
Christopher J. Kasanga

This study was conducted to determine the spatiotemporal distribution of foot-and-mouth disease (FMD) virus (FMDV) serotypes and evaluate the awareness of livestock keepers about FMD in Tanzania. An observational prospective study involving serological analysis, FMDV antigen detection and questionnaire survey was carried out in the lake zone of Tanzania. Seroprevalence of antibodies to the nonstructural protein 3ABC of FMDV and serotype-specific antigen detection were investigated by using SVANOVIR® FMDV 3ABC-Ab ELISA and indirect-sandwich ELISA (sELISA), respectively, whilst a structured questionnaire was used to evaluate the awareness of livestock keepers about FMD. During the period of 2010–2011, both serum and tissue (foot-and-mouth epithelia) samples were collected from cattle suspected of FMD in 13 districts of the four regions of the lake zone. A total of 107 (80.5%) out of 133 tested serum samples were seropositive to nonstructural protein 3ABC, with at least one sample being positive from all 10 districts screened. Fifteen (53.6%) out of 28 tissue epithelial samples collected from FMD cases in eight districts during the course of this study were positive to serotype O FMDV antigen. Of these eight districts, serotype O FMDV antigens were detected from seven districts and no other serotypes were recovered from animal samples screened. Questionnaire surveys in six districts indicated that livestock keepers in the lake zone were aware of the clinical manifestations (26/29 = 90.0%) and economic impact (23/29 = 79.0%) of FMD in the region. The questionnaire data showed that FMD outbreaks often occurred after rainy seasons (22/29 = 75.9%), with the highest peaks predominantly occurring just after the long rains in May and June, and at the end of the short rains in November and December of each year. The spatial distribution of the FMD cases suggested that serotype O virus exposure was the only widespread cause of the 2010–2011 outbreaks in the lake zone.


2021 ◽  
pp. 104914
Author(s):  
Zahra Naeem ◽  
Sohail Raza ◽  
Saba Afzal ◽  
Ali Ahmad Sheikh ◽  
Muhammad Muddassir Ali ◽  
...  

2014 ◽  
Vol 95 (5) ◽  
pp. 1104-1116 ◽  
Author(s):  
Amin S. Asfor ◽  
Sasmita Upadhyaya ◽  
Nick J. Knowles ◽  
Donald P. King ◽  
David J. Paton ◽  
...  

Five neutralizing antigenic sites have been described for serotype O foot-and-mouth disease viruses (FMDV) based on monoclonal antibody (mAb) escape mutant studies. However, a mutant virus selected to escape neutralization of mAb binding at all five sites was previously shown to confer complete cross-protection with the parental virus in guinea pig challenge studies, suggesting that amino acid residues outside the mAb binding sites contribute to antibody-mediated in vivo neutralization of FMDV. Comparison of the ability of bovine antisera to neutralize a panel of serotype O FMDV identified three novel putative sites at VP2-74, VP2-191 and VP3-85, where amino acid substitutions correlated with changes in sero-reactivity. The impact of these positions was tested using site-directed mutagenesis to effect substitutions at critical amino acid residues within an infectious copy of FMDV O1 Kaufbeuren (O1K). Recovered viruses containing additional mutations at VP2-74 and VP2-191 exhibited greater resistance to neutralization with both O1K guinea pig and O BFS bovine antisera than a virus that was engineered to include only mutations at the five known antigenic sites. The changes at VP2-74 and VP3-85 are adjacent to critical amino acids that define antigenic sites 2 and 4, respectively. However VP2-191 (17 Å away from VP2-72), located at the threefold axis and more distant from previously identified antigenic sites, exhibited the most profound effect. These findings extend our knowledge of the surface features of the FMDV capsid known to elicit neutralizing antibodies, and will improve our strategies for vaccine strain selection and rational vaccine design.


2017 ◽  
Vol 91 (22) ◽  
Author(s):  
Michael Puckette ◽  
Benjamin A. Clark ◽  
Justin D. Smith ◽  
Traci Turecek ◽  
Erica Martel ◽  
...  

ABSTRACT The foot-and-mouth disease virus (FMDV) afflicts livestock in more than 80 countries, limiting food production and global trade. Production of foot-and-mouth disease (FMD) vaccines requires cytosolic expression of the FMDV 3C protease to cleave the P1 polyprotein into mature capsid proteins, but the FMDV 3C protease is toxic to host cells. To identify less-toxic isoforms of the FMDV 3C protease, we screened 3C mutants for increased transgene output in comparison to wild-type 3C using a Gaussia luciferase reporter system. The novel point mutation 3C(L127P) increased yields of recombinant FMDV subunit proteins in mammalian and bacterial cells expressing P1-3C transgenes and retained the ability to process P1 polyproteins from multiple FMDV serotypes. The 3C(L127P) mutant produced crystalline arrays of FMDV-like particles in mammalian and bacterial cells, potentially providing a practical method of rapid, inexpensive FMD vaccine production in bacteria. IMPORTANCE The mutant FMDV 3C protease L127P significantly increased yields of recombinant FMDV subunit antigens and produced virus-like particles in mammalian and bacterial cells. The L127P mutation represents a novel advancement for economical FMD vaccine production.


2021 ◽  
Vol 8 ◽  
Author(s):  
Emma Brown ◽  
Graham Freimanis ◽  
Andrew E. Shaw ◽  
Daniel L. Horton ◽  
Simon Gubbins ◽  
...  

The sequencing of viral genomes provides important data for the prevention and control of foot-and-mouth disease (FMD) outbreaks. Sequence data can be used for strain identification, outbreak tracing, and aiding the selection of the most appropriate vaccine for the circulating strains. At present, sequencing of FMD virus (FMDV) relies upon the time-consuming transport of samples to well-resourced laboratories. The Oxford Nanopore Technologies' MinION portable sequencer has the potential to allow sequencing in remote, decentralised laboratories closer to the outbreak location. In this study, we investigated the utility of the MinION to generate sequence data of sufficient quantity and quality for the characterisation of FMDV serotypes O, A, Asia 1. Prior to sequencing, a universal two-step RT-PCR was used to amplify parts of the 5′UTR, as well as the leader, capsid and parts of the 2A encoding regions of FMDV RNA extracted from three sample matrices: cell culture supernatant, tongue epithelial suspension and oral swabs. The resulting consensus sequences were compared with reference sequences generated on the Illumina MiSeq platform. Consensus sequences with an accuracy of 100% were achieved within 10 and 30 min from the start of the sequencing run when using RNA extracted from cell culture supernatants and tongue epithelial suspensions, respectively. In contrast, sequencing from swabs required up to 2.5 h. Together these results demonstrated that the MinION sequencer can be used to accurately and rapidly characterise serotypes A, O, and Asia 1 of FMDV using amplicons amplified from a variety of different sample matrices.


2018 ◽  
Vol 6 (2) ◽  
pp. 23-26
Author(s):  
Mohammad Showkat Mahmud ◽  
Eusha Islam ◽  
Md. Giasuddin ◽  
Mohammed Abdus Samad ◽  
Md. Rezaul Karim ◽  
...  

2018 ◽  
Vol 30 (5) ◽  
pp. 699-707 ◽  
Author(s):  
Chungwon J. Chung ◽  
Alfonso Clavijo ◽  
Mangkey A. Bounpheng ◽  
Sabena Uddowla ◽  
Abu Sayed ◽  
...  

The highly contagious foot-and-mouth disease virus (FMDV) afflicts cloven-hoofed animals, resulting in significant costs because of loss of trade and recovery from disease. We developed a sensitive, specific, and rapid competitive ELISA (cELISA) to detect serum antibodies to FMDV. The cELISA utilized a monoclonal blocking antibody specific for a highly conserved FMDV nonstructural 3B epitope, a recombinant mutant FMDV 3ABC coating protein, and optimized format variables including serum incubation for 90 min at 20–25°C. Samples from 16 animals experimentally infected with one FMDV serotype (A, O, Asia, or SAT-1) demonstrated early detection capacity beginning 7 d post-inoculation. All samples from 55 vesicular stomatitis virus antibody-positive cattle and 44 samples from cloven-hoofed animals affected by non-FMD vesicular diseases were negative in the cELISA, demonstrating 100% analytical specificity. The diagnostic sensitivity was 100% against sera from 128 cattle infected with isolates of all FMDV serotypes, emphasizing serotype-agnostic results. Diagnostic specificities of U.S. cattle ( n = 1135) and swine ( n = 207) sera were 99.4% and 100%, respectively. High repeatability and reproducibility were demonstrated with 3.1% coefficient of variation in percent inhibition data and 100% agreement using 2 kit lots and 400 negative control serum samples, with no difference between bench and biosafety cabinet operation. Negative results from vaccinated, uninfected cattle, pig, and sheep sera confirmed the DIVA (differentiate infected from vaccinated animals) capability. This rapid (<3 h), select agent–free assay with high sensitivity and specificity, DIVA capability, and room temperature processing capability will serve as a useful tool in FMDV surveillance, emergency preparedness, response, and outbreak recovery programs.


Sign in / Sign up

Export Citation Format

Share Document