scholarly journals M-Center in Neutron Irradiated 4H-SiC

Author(s):  
Ivana Capan ◽  
Tomislav Brodar ◽  
Takahiro Makino ◽  
Vladimir Radulovic ◽  
Luka Snoj

We report on metastable defects introduced in n-type 4H-SiC material by epithermal and fast neutron irradiation. The epithermal and fast neutron irradiation defects in 4H-SiC are much less explored compared to electron or proton irradiation induced defects. In addition to silicon vacancy (Vsi) and carbon antisite-carbon vacancy (CAV) complex, the neutron irradiation has introduced four deep level defects, all arising from the metastable defect, the M-center. The metastable deep level defects were investigated by deep level transient spectroscopy (DLTS), high-resolution Laplace DLTS (L-DLTS) and isothermal DLTS. The existence of the fourth deep level M4, recently observed in ion implanted 4H-SiC, has been additionally confirmed in neutron irradiated samples. The isothermal DLTS technique has been proven as a useful tool for studying the metastable defects.

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1404
Author(s):  
Ivana Capan ◽  
Tomislav Brodar ◽  
Takahiro Makino ◽  
Vladimir Radulovic ◽  
Luka Snoj

We report on the metastable defects introduced in the n-type 4H-SiC material by epithermal and fast neutron irradiation. The epithermal and fast neutron irradiation defects in 4H-SiC are much less explored compared to electron or proton irradiation-induced defects. In addition to the carbon vacancy (Vc), silicon vacancy (Vsi) and carbon antisite-carbon vacancy (CAV) complex, the neutron irradiation has introduced four deep-level defects, all arising from the metastable defect, the M-center. The metastable deep-level defects were investigated by deep level transient spectroscopy (DLTS), high-resolution Laplace DLTS (L-DLTS) and isothermal DLTS. The existence of the fourth deep-level defect, M4, recently observed in ion-implanted 4H-SiC, has been additionally confirmed in neutron-irradiated samples. The isothermal DLTS technique has been proven as a useful tool for studying the metastable defects.


Vacuum ◽  
2009 ◽  
Vol 84 (1) ◽  
pp. 32-36 ◽  
Author(s):  
I. Capan ◽  
B. Pivac ◽  
I.D. Hawkins ◽  
V.P. Markevich ◽  
A.R. Peaker ◽  
...  

2006 ◽  
Vol 957 ◽  
Author(s):  
F Danie Auret ◽  
Michael Hayes ◽  
Jackie Nel ◽  
Walter Meyer ◽  
Pieter Johan Janse van Rensburg ◽  
...  

ABSTRACTRu Schottky barrier diodes (SBD's) were fabricated on the Zn face of n-type ZnO. These diodes were irradiated with 1.8 MeV at fluences ranging from 1 ´ 1013 cm-2 to 2.4 ´ 1014 cm-2. Capacitance and current (I) deep level transient spectroscopy (DLTS) was used to characterise the irradiation induced defects. Capacitance DLTS showed that proton irradiation introduced a level, Ep1, at 0.52 eV below the conduction band at an introduction rate of 13±1 cm-1. A defect with a very similar DLTS signature was also present in low concentrations in unirradiated ZnO. I-DLTS revealed that this proton irradiation introduced a defect with an energy level at (0.036± 0.004) eV below the conduction band. This defect is clearly distinguishable from a defect with a level at (0.033± 0.004) eV below the conduction band that was present in the unirradiated sample. It is speculated that these shallow level defects are related to zinc interstitials or complexes involving them.


2011 ◽  
Vol 178-179 ◽  
pp. 192-197 ◽  
Author(s):  
Helge Malmbekk ◽  
Lasse Vines ◽  
Edouard V. Monakhov ◽  
Bengt Gunnar Svensson

Interaction between hydrogen (H) and irradiation induced defects in p-type silicon (Si) have been studied in H implanted pn-junctions, using deep level transient spectroscopy (DLTS), as well as minority carrier transient spectroscopy (MCTS). Two H related levels at Ev+0.27 eV and Ec-0.32 eV have been observed (Ev and Ec denote the valence and conduction band edge, respectively). Both levels form after a 10 min anneal at 125C, concurrent with the release of H from the boron-hydrogen (B-H) complex. The correlated formation rates and absolute concentrations of the two levels support the notion that they are due to the same defect. In addition, a level at Ec-0.45 eV is observed and discussed in terms of vacancy-hydrogen related defects.


1993 ◽  
Vol 325 ◽  
Author(s):  
George C. Rybicki ◽  
Wendell S. Williams

AbstractDeep Level Transient Spectroscopy (DLTS) was used to study the defects introduced in Zn and Cd doped Schottky barrier diodes by 2 MeV proton irradiation. The defects H3, H4 and H5 were observed in lightly Zn doped InP, while only the defects H3 and H5 were observed in more heavily Zn doped and Cd doped InP. The defect activation energies and capture cross sections did not vary between the Zn and Cd doped InP.The concentration of the radiation induced defects was also measured. The introduction rate of the defect H4 in the lightly Zn doped InP and the introduction rate of the defect H3 in the heavily Zn and Cd doped InP were about equal, but the introduction rate of the defect H5 varied strongly among the three types of material. The introduction rate of H5 was highest in the heavily Zn doped InP but the lowest in the heavily Cd doped InP, even though they were doped comparably. As a result, the total defect introduction rate was lowest in the highly Cd doped InP.The results can be interpreted in terms of the models for the formation and annealing of defects, and by the different diffusion rates of Zn and Cd in InP.


Sign in / Sign up

Export Citation Format

Share Document