scholarly journals Bounding Greybody and Deflection Angle of Improved Schwarzschild Black Hole

Author(s):  
Wajiha Javed ◽  
Muhammad Aqib ◽  
Ali Övgün

We explore the deflection angle in the framework of improved Schwarzschild Black hole utilizing the most advance geometrical path adopted by Gibbon-Werner. To investigate deflection angle of the photon ray by weak gravitational lensing for this black hole, we derive the optical curvature and perform the application of Gauss-Bonnet theorem on the optical metric. Moreover, we study the impacts of the plasma medium in context of the weak gravitational lensing in relate to this black hole. Further, we also study the graphical analysis of the deflection angle in both the plasma and non-plasma mediums. Also, we find the rigorous bound base upon the greybody factor for improved Schwarzschild black hole. A while later, we contrast our conclusions about deflection angle with the deflection angles of Schwarzschild black hole within plasma and non-plasma mediums.

2020 ◽  
Vol 17 (12) ◽  
pp. 2050182
Author(s):  
Wajiha Javed ◽  
Muhammad Bilal Khadim ◽  
Ali Övgün

In this paper, we analyze the weak gravitational lensing in the context of Einstein-nonlinear-Maxwell–Yukawa black hole. To this desire, we derive the deflection angle of light by Einstein-nonlinear-Maxwell–Yukawa black hole using the Gibbons and Werner method. For this purpose, we obtain the Gaussian curvature and apply the Gauss–Bonnet theorem to find the deflection angle of Einstein-nonlinear-Maxwell–Yukawa black hole in weak field limits. Moreover, we derive the deflection angle of light in the influence of plasma medium. We also analyze the graphical behavior of deflection angle by Einstein-nonlinear-Maxwell–Yukawa black hole in the presence of plasma as well as non-plasma medium.


Author(s):  
Wajiha Javed ◽  
Jameela Abbas ◽  
Yashmitha Kumaran ◽  
Ali Övgün

The main goal of this paper is to study the weak gravitational lensing by Horndeski black hole in weak field approximation. In order to do so, we exploit the Gibbons-Werner method to the optical geometry of Horndeski black hole and implement the Gauss-Bonnet theorem to accomplish the deflection angle of light in weak field region. Furthermore, we have endeavored to extend the scale of our work by comprising the impact of plasma medium on the deflection angle as properly. Later, the graphical influence of the deflection angle of photon on Horndeski black hole in plasma and non-plasma medium is examined.


Author(s):  
Wajiha Javed ◽  
Muhammad Bilal Khadim ◽  
Ali Övgün

In this article, we analyze the weak gravitational lensing in the context of Einstein-non-linear Maxwell-Yukawa black hole. To this desire, we derive the deflection angle of light by Einstein-non-linear Maxwell-Yukawa black hole using the Gibbons and Werner method. For this purpose, we obtain the Gaussian optical curvature and implement the Gauss-Bonnet theorem to investigate the deflection angle of Einstein-non-linear Maxwell-Yukawa black hole. Moreover, we derive the deflection angle of light in the presence of plasma medium. We also analyze the graphical behavior of deflection angle by Einstein-non-linear Maxwell-Yukawa black hole in the presence of plasma as well as non-plasma medium.


Author(s):  
Wajiha Javed ◽  
Muhammad Bilal Khadim ◽  
Ali Övgün

In this article, we demonstrate the weak gravitational lensing in the context of Bocharova-Bronnikove-Melnikov-Bekenstein (BBMB) black hole. To this desire, we derive the deflection angle of light in a plasma medium by BBMB black hole using the Gibbons and Werner method. First, we obtain the Gaussian optical curvature and implement the Gauss-Bonnet theorem to investigate the deflection angle for spherically symmetric spacetime of BBMB black hole. Moreover, we also analyze the graphical behavior of deflection angle by BBMB black hole in the presence of plasma medium.


Author(s):  
Wajiha Javed ◽  
Muhammad Bilal Khadim ◽  
Jameela Abbas ◽  
Ali Övgün

In this paper, we discuss the weak gravitational lensing in the context of stringy black holes. Initially, we examine the deflection angle of photon by charged stringy black hole. For this desire, we compute the Gaussian optical curvature and implement the Gauss-Bonnet theorem to investigate the deflection angle for spherically balanced spacetime of stringy black hole. We also analyze the influence of plasma medium in the weak gravitational lensing for stringy black hole. Moreover, the graphical impact of coupling constant $\alpha$, impact parameter $b$ , black hole charge $Q$ on deflection angle by charged stringy black hole has been studied in plasma as well as non-plasma medium.


Author(s):  
Hasan El Moumni ◽  
Karima Masmar ◽  
Ali Övgün

In this paper, we study the gravitational lensing by some black hole classes within the non-linear electrodynamics in weak field limits. First, we calculate an optical geometry of the non-linear electrodynamics black hole then we use the Gauss-Bonnet theorem for finding deflection angle in weak field limits. The effect of non-linear electrodynamics on the deflection angle in leading order terms is studied. Furthermore, we discuss the effects of the plasma medium on the weak deflection angle.


Author(s):  
Ali Övgün ◽  
Yashmitha Kumaran ◽  
Wajiha Javed ◽  
Jameela Abbas

The main goal of this paper is to study the weak gravitational lensing by Horndeski black hole in weak field approximation. In order to do so, we exploit the Gibbons-Werner method to the optical geometry of Horndeski black hole and implement the Gauss-Bonnet theorem to accomplish the deflection angle of light in weak field region. Furthermore, we have endeavored to extend the scale of our work by comprising the impact of plasma medium on the deflection angle as properly. Later, the graphical influence of the deflection angle of photon on Horndeski black hole in plasma and non-plasma medium is examined.


Author(s):  
Ali Övgün ◽  
Yashmitha Kumaran ◽  
Wajiha Javed ◽  
Jameela Abbas

The main goal of this paper is to study the weak gravitational lensing by Horndeski black hole in weak field approximation. In order to do so, we exploit the Gibbons-Werner method to the optical geometry of Horndeski black hole and implement the Gauss-Bonnet theorem to accomplish the deflection angle of light in weak field region. Furthermore, we have endeavored to extend the scale of our work by comprising the impact of plasma medium on the deflection angle as properly. Later, the graphical influence of the deflection angle of photon on Horndeski black hole in plasma and non-plasma medium is examined.


Author(s):  
Farruh Atamurotov ◽  
Ahmadjon Abdujabbarov ◽  
Javlon Rayimbaev

AbstractThis paper is devoted to study weak gravitational lensing properties around black hole surrounded plasma medium in modified gravity (MOG). We have investigated the effects of the MOG-parametr and plasma medium on the deflection angle and total magnification of the images. we have presented the comparisons of the effects of the uniform plasma, singular isothermal sphere and non-singular isothermal sphere. We have also shown that the uniform plasma effects significantly stronger than the other models of plasma medium.Through the studies of the total magnifications of images of a remote source we have shown that the effects of the MOG parameter and plasma medium are similar and the increase of the MOG parameter and plasma frequency cause to increase the total magnification. Moreover, we have explored and analyzed how the MOG effects can reflect the plasma medium providing the same values of the total magnification of images.


Author(s):  
Wajiha Javed ◽  
Iqra Hussain ◽  
Ali Övgün

In this paper, we study light rays in a Kazakov-Solodukhin black hole. To this end, we use the optical geometry of the Kazakov-Solodukhin black hole within the Gauss-bonnet theorem. We first show the effect of the deformation parameter $a$ on the Gaussian optical curvature, and then we use the modern method popularized by Gibbons and Werner to calculate the weak deflection angle of light. Our calculations of deflection angle show how gravitational lensing is affected by the deformation parameter $a$. Moreover, we demonstrate the effect of a plasma medium on weak gravitational lensing by the Kazakov-Solodukhin black hole. We discuss that the increasing the deformation parameter $a$, will increase the weak deflection angle of the black hole. Our analysis also uncloak how one may find a observational evidence for a deformation parameter on the deflection angle.


Sign in / Sign up

Export Citation Format

Share Document