scholarly journals Superionic Solid Electrolyte Li7La3Zr2O12 Synthesis and Thermodynamics for Application in All-Solid-State Lithium-Ion Batteries

Author(s):  
Anatoliy Popovich ◽  
Pavel Novikov ◽  
Qingsheng Wang ◽  
Daniil Aleksandrov

Li7La3Zr2O12Solid-state reaction was used for Li7La3Zr2O12 material synthesis from Li2CO3, La2O3 and ZrO2 powders. Phase investigation by XRD, SEM and EDS methods of Li7La3Zr2O12 were carried out. The molar heat capacity of Li7La3Zr2O12 at constant pressure in the temperature range 298-800 K should be calculated as Cp,m = 518.135+0.599 × T - 8.339 × T−2, where T is absolute temperature, . Thermodynamic characteristics of Li7La3Zr2O12 were determined as next: entropy S0298 = 362.3 J mol-1 K-1, molar enthalpy of dissolution ΔdHLlZO = ˗ 1471.73 ± 29.39 kJ mol−1, the standard enthalpy of formation from elements ΔfH0 = ˗ 9327.65 ± 7.9 kJ mol−1, the standard Gibbs free energy of formation ∆f G0298 = ˗9435.6 kJ mol-1.

Author(s):  
Anatoliy Popovich ◽  
Pavel Novikov ◽  
Daniil Aleksandrov ◽  
Konstantin Pushnitsa ◽  
Qingsheng Wang

Li3FeN2 material was synthesized by two-step solid-state method from Li3N (adiabatic camera) and FeN2 (tube furnace) powders. Phase investigation of Li3N, FeN2 and Li3FeN2 were carried out. Discharge capacity of Li3FeN2 is 343 mAh g-1, that is about 44.7% of theoretic capacity. The molar heat capacity of Li3FeN2 at constant pressure in the temperature range 298-900 K should be calculated as Cp,m = 77,831 + 0,130 × T – 6,289 × T-2, where T is absolute temperature, . Thermodynamic characteristics of Li3FeN2 were determined as next: entropy S0298 = 116.2 J mol-1 K-1, molar enthalpy of dissolution ΔdHLFN = ˗ 206,537 ± 2,8 kJ mol−1, the standard enthalpy of formation ΔfH0 = ˗ 291.331 ± 5.7 kJ mol−1, entropy S0298 = 113.2 J mol-1 K-1 (Neumann-Kopp rule) and 116.2 J mol-1 K-1 (W.Herz rule), the standard Gibbs free energy of formation ∆f G0298 = ˗276,7 kJ mol-1.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7562
Author(s):  
Anatoliy Popovich ◽  
Pavel Novikov ◽  
Qingsheng Wang ◽  
Konstantin Pushnitsa ◽  
Daniil Aleksandrov

Li3FeN2 material was synthesized by the two-step solid-state method from Li3N (adiabatic camera) and FeN2 (tube furnace) powders. Phase investigation of Li3N, FeN2, and Li3FeN2 was carried out. The discharge capacity of Li3FeN2 is 343 mAh g−1, which is about 44.7% of the theoretic capacity. The ternary nitride Li3FeN2 molar heat capacity is calculated using the formula Cp,m = 77.831 + 0.130 × T − 6289 × T−2, (T is absolute temperature, temperature range is 298–900 K, pressure is constant). The thermodynamic characteristics of Li3FeN2 have the following values: entropy S0298 = 116.2 J mol−1 K−1, molar enthalpy of dissolution ΔdHLFN = −206.537 ± 2.8 kJ mol−1, the standard enthalpy of formation ΔfH0 = −291.331 ± 5.7 kJ mol−1, entropy S0298 = 113.2 J mol−1 K−1 (Neumann–Kopp rule) and 116.2 J mol−1 K−1 (W. Herz rule), the standard Gibbs free energy of formation ΔfG0298 = −276.7 kJ mol−1.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 281
Author(s):  
Daniil Aleksandrov ◽  
Pavel Novikov ◽  
Anatoliy Popovich ◽  
Qingsheng Wang

Solid-state reaction was used for Li7La3Zr2O12 material synthesis from Li2CO3, La2O3 and ZrO2 powders. Phase investigation of Li7La3Zr2O12 was carried out by x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) methods. The thermodynamic characteristics were investigated by calorimetry measurements. The molar heat capacity (Cp,m), the standard enthalpy of formation from binary compounds (ΔoxHLLZO) and from elements (ΔfHLLZO), entropy (S0298), the Gibbs free energy of the Li7La3Zr2O12 formation (∆f G0298) and the Gibbs free energy of the LLZO reaction with metallic Li (∆rGLLZO/Li) were determined. The corresponding values are Cp,m = 518.135 + 0.599 × T − 8.339 × T−2, (temperature range is 298–800 K), ΔoxHLLZO = −186.4 kJ·mol−1, ΔfHLLZO = −9327.65 ± 7.9 kJ·mol−1, S0298 = 362.3 J·mol−1·K−1, ∆f G0298 = −9435.6 kJ·mol−1, and ∆rGLLZO/Li = 8.2 kJ·mol−1, respectively. Thermodynamic performance shows the possibility of Li7La3Zr2O12 usage in lithium-ion batteries.


Author(s):  
Aleksandr I. Lytkin ◽  
Viktor V. Chernikov ◽  
Olga N. Krutova ◽  
Svetlana A. Bychkova ◽  
Pavel D. Krutov

Depending on the chemical nature of the side radicals, amino acids can be divided into aromatic and aliphatic, as well as amino acids, the presence of non-polar or polar functional groups in the side radicals. Since the characteristics of individual amino acids in the protein are determined by the nature (physico-chemical properties) of their side radicals, which are in a hydrated state. It is also extremely important to study the thermodynamic characteristics of the hydration of the side radicals of amino acids of different chemical nature. To obtain empirical correlations that would establish a connection between the thermodynamic parameters of the interaction of dissolved compounds with the solvent and the size of the molecules to be dissolved (having different physico-chemical nature), it is necessary to accumulate a sufficient amount of experimental data on the heats of dissolution of amino acids. This will allow you to calculate the contribution of intermolecular interactions for different groups of molecules. By potentiometric method the protolytic equilibria in aqueous solutions of paraoxyphenylglycine were investigated. The measurements were carried out at a temperature of 298.15 K and an ionic strength of 0.25 (against the background of potassium nitrate). Calorimetric measurements were carried out on an ampoule calorimeter, with an isothermal shell, a thermistor temperature sensor KMT-14, and an automatic record of the temperature-time curve. The operation of the unit was verified by the integral enthalpy of dissolution in water of crystalline potassium chloride. The agreement between the experimental enthalpies of dissolution of KCl (cr) with the most reliable literature data indicates that there are no systematic errors in the calorimetric system. Samples of para-oxyphenylglycine were weighed on a VLP-200 scale with an accuracy of 2∙10-4 g. The confidence interval of the mean value of ΔH was calculated with a probability of 0.95. A paraxyphenylglycine preparation, «Reachim», was used in the work. The reagent was used without further purification. The RRSU program was used to determine the equilibrium composition of the solutions. Standard enthalpies of combustion and formation of crystalline paraxyphenylglycine were calculated. Thermal effects of dissolution of crystalline paraxyphenylglycine in water and in solutions of potassium hydroxide at 298.15 K were determined with the direct calorimetric method. Standard enthalpies of formation of amino acids and products of their dissociation in aqueous solution were calculated.


2012 ◽  
Vol 546-547 ◽  
pp. 42-47
Author(s):  
Hong Xia Liu ◽  
Hui Liu

136 polychlorinated 5,10-dihydrophenarsazine (PCPhZ) in the ideal gas state at 298.15 K and 101.3 kPa have been calculated at the B3LYP/6-31G* level using Gaussian 03 program, and their thermodynamic parameters were obtained. The isodesmic reactions were designed to calculate standard enthalpy of formation (ΔfHө) and standard free energy of formation (ΔfGө) of PCPhZ congeners. The relations of these thermodynamic parameters with the number and position of Cl atom substitution (NPCS) were discussed, and it was found that there exist high correlation between thermodynamic parameters (heat capacity at constant volume (Cvө), entropy (Sө), ΔfHө and ΔfGө) and NPCS. On the basis of the relative magnitude of their ΔfGө, the order of relative stability of PCPhZ congeners was theoretically proposed.


1990 ◽  
Vol 163 (1) ◽  
pp. 109-113 ◽  
Author(s):  
Zhi-Tong Sui ◽  
Xing-Yi Xiao ◽  
Ke-Qin Huang ◽  
Chang-Zhen Wang

2021 ◽  
pp. 2150469
Author(s):  
T. G. Naghiyev ◽  
R. M. Rzayev

The solid solutions of [Formula: see text] were synthesized by solid-phase reactions from powder components of CaS, BaS, and Ga2S3. The temperature-concentration dependences of the Gibbs free energy of formation of [Formula: see text] solid solutions from ternary compounds and phase diagrams of the CaGa2S4–BaGa2S4 were determined by a calculation method. It was revealed that continuous solid solutions are formed in these systems. The spinodal decomposition of [Formula: see text] solid solutions into two phases is predicted at ordinary temperatures.


Sign in / Sign up

Export Citation Format

Share Document