ternary nitride
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 26)

H-INDEX

22
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7562
Author(s):  
Anatoliy Popovich ◽  
Pavel Novikov ◽  
Qingsheng Wang ◽  
Konstantin Pushnitsa ◽  
Daniil Aleksandrov

Li3FeN2 material was synthesized by the two-step solid-state method from Li3N (adiabatic camera) and FeN2 (tube furnace) powders. Phase investigation of Li3N, FeN2, and Li3FeN2 was carried out. The discharge capacity of Li3FeN2 is 343 mAh g−1, which is about 44.7% of the theoretic capacity. The ternary nitride Li3FeN2 molar heat capacity is calculated using the formula Cp,m = 77.831 + 0.130 × T − 6289 × T−2, (T is absolute temperature, temperature range is 298–900 K, pressure is constant). The thermodynamic characteristics of Li3FeN2 have the following values: entropy S0298 = 116.2 J mol−1 K−1, molar enthalpy of dissolution ΔdHLFN = −206.537 ± 2.8 kJ mol−1, the standard enthalpy of formation ΔfH0 = −291.331 ± 5.7 kJ mol−1, entropy S0298 = 113.2 J mol−1 K−1 (Neumann–Kopp rule) and 116.2 J mol−1 K−1 (W. Herz rule), the standard Gibbs free energy of formation ΔfG0298 = −276.7 kJ mol−1.


2021 ◽  
pp. 1677-1683
Author(s):  
Paul K. Todd ◽  
M. Jewels Fallon ◽  
James R. Neilson ◽  
Andriy Zakutayev

2021 ◽  
Vol 127 (9) ◽  
Author(s):  
Seok Choi ◽  
Ha Young Lee ◽  
Hee Ju Yun ◽  
Byung Joon Choi
Keyword(s):  

2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Xiaotian Wang ◽  
Feng Zhou ◽  
Tie Yang ◽  
Minquan Kuang ◽  
Zhi-Ming Yu ◽  
...  
Keyword(s):  

Author(s):  
Ann L. Greenaway ◽  
Celeste L. Melamed ◽  
M. Brooks Tellekamp ◽  
Rachel Woods-Robinson ◽  
Eric S. Toberer ◽  
...  

Interest in inorganic ternary nitride materials has grown rapidly over the past few decades, as their diverse chemistries and structures make them appealing for a variety of applications. Due to synthetic challenges posed by the stability of N2, the number of predicted nitride compounds dwarfs the number that have been synthesized, offering a breadth of opportunity for exploration. This review summarizes the fundamental properties and structural chemistry of ternary nitrides, leveraging metastability and the impact of nitrogen chemical potential. A discussion of prevalent defects, both detrimental and beneficial, is followed by a survey of synthesis techniques and their interplay with metastability. Throughout the review, we highlight applications (such as solid-state lighting, electrochemical energy storage, and electronic devices) in which ternary nitrides show particular promise. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Simon D. Kloß ◽  
Arthur Haffner ◽  
Pascal Manuel ◽  
Masato Goto ◽  
Yuichi Shimakawa ◽  
...  

AbstractTransition metal nitrides are an important class of materials with applications as abrasives, semiconductors, superconductors, Li-ion conductors, and thermoelectrics. However, high oxidation states are difficult to attain as the oxidative potential of dinitrogen is limited by its high thermodynamic stability and chemical inertness. Here we present a versatile synthesis route using azide-mediated oxidation under pressure that is used to prepare the highly oxidised ternary nitride Ca4FeN4 containing Fe4+ ions. This nitridometallate features trigonal-planar [FeN3]5− anions with low-spin Fe4+ and antiferromagnetic ordering below a Neel temperature of 25 K, which are characterised by neutron diffraction, 57Fe-Mössbauer and magnetisation measurements. Azide-mediated high-pressure synthesis opens a way to the discovery of highly oxidised nitrides.


Author(s):  
Muhammad Ghufran ◽  
Ghulam Moeen Uddin ◽  
Syed Muhammad Arafat ◽  
Muhammad Jawad ◽  
Abdul Rehman

Friction and wear are very crucial aspects of the performance, service life, and the operational costs for a mechanical component or equipment. To reduce the friction and wear at the interface of the sliding or mating parts, different conventional binary coatings like TiN, CrN, TiC, etc., have been used in the last two decades. But ternary nitride coatings have replaced the binary coatings due to better tribo-mechanical properties. Now, ternary nitride coatings are being extensively used in several fields such as cutting tools, machinery parts, orthopedic implants, microelectronics, marine equipment, decorative purposes, automotive, aerospace industry, etc. Many researchers have developed and investigated the ternary nitride coatings for different applications. Nonetheless, there is a huge research potential in the development and optimization of the tribo-mechanical properties of the ternary nitride coatings. Therefore, tribo-mechanical studies of the ternary nitride coatings are needed for fostering the new industrial applications. This paper is focused to summarize and compare the tribo-mechanical properties of the ternary nitride coatings comprehensively and aims to explore the novel research directions in the development of the ternary nitride coatings.


Sign in / Sign up

Export Citation Format

Share Document