scholarly journals Synthesis Method and Thermodynamic Characteristics of Anode Material Li3FeN2 for Application in Lithium-Ion Batteries

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7562
Author(s):  
Anatoliy Popovich ◽  
Pavel Novikov ◽  
Qingsheng Wang ◽  
Konstantin Pushnitsa ◽  
Daniil Aleksandrov

Li3FeN2 material was synthesized by the two-step solid-state method from Li3N (adiabatic camera) and FeN2 (tube furnace) powders. Phase investigation of Li3N, FeN2, and Li3FeN2 was carried out. The discharge capacity of Li3FeN2 is 343 mAh g−1, which is about 44.7% of the theoretic capacity. The ternary nitride Li3FeN2 molar heat capacity is calculated using the formula Cp,m = 77.831 + 0.130 × T − 6289 × T−2, (T is absolute temperature, temperature range is 298–900 K, pressure is constant). The thermodynamic characteristics of Li3FeN2 have the following values: entropy S0298 = 116.2 J mol−1 K−1, molar enthalpy of dissolution ΔdHLFN = −206.537 ± 2.8 kJ mol−1, the standard enthalpy of formation ΔfH0 = −291.331 ± 5.7 kJ mol−1, entropy S0298 = 113.2 J mol−1 K−1 (Neumann–Kopp rule) and 116.2 J mol−1 K−1 (W. Herz rule), the standard Gibbs free energy of formation ΔfG0298 = −276.7 kJ mol−1.

Author(s):  
Anatoliy Popovich ◽  
Pavel Novikov ◽  
Daniil Aleksandrov ◽  
Konstantin Pushnitsa ◽  
Qingsheng Wang

Li3FeN2 material was synthesized by two-step solid-state method from Li3N (adiabatic camera) and FeN2 (tube furnace) powders. Phase investigation of Li3N, FeN2 and Li3FeN2 were carried out. Discharge capacity of Li3FeN2 is 343 mAh g-1, that is about 44.7% of theoretic capacity. The molar heat capacity of Li3FeN2 at constant pressure in the temperature range 298-900 K should be calculated as Cp,m = 77,831 + 0,130 × T – 6,289 × T-2, where T is absolute temperature, . Thermodynamic characteristics of Li3FeN2 were determined as next: entropy S0298 = 116.2 J mol-1 K-1, molar enthalpy of dissolution ΔdHLFN = ˗ 206,537 ± 2,8 kJ mol−1, the standard enthalpy of formation ΔfH0 = ˗ 291.331 ± 5.7 kJ mol−1, entropy S0298 = 113.2 J mol-1 K-1 (Neumann-Kopp rule) and 116.2 J mol-1 K-1 (W.Herz rule), the standard Gibbs free energy of formation ∆f G0298 = ˗276,7 kJ mol-1.


Author(s):  
Anatoliy Popovich ◽  
Pavel Novikov ◽  
Qingsheng Wang ◽  
Daniil Aleksandrov

Li7La3Zr2O12Solid-state reaction was used for Li7La3Zr2O12 material synthesis from Li2CO3, La2O3 and ZrO2 powders. Phase investigation by XRD, SEM and EDS methods of Li7La3Zr2O12 were carried out. The molar heat capacity of Li7La3Zr2O12 at constant pressure in the temperature range 298-800 K should be calculated as Cp,m = 518.135+0.599 × T - 8.339 × T−2, where T is absolute temperature, . Thermodynamic characteristics of Li7La3Zr2O12 were determined as next: entropy S0298 = 362.3 J mol-1 K-1, molar enthalpy of dissolution ΔdHLlZO = ˗ 1471.73 ± 29.39 kJ mol−1, the standard enthalpy of formation from elements ΔfH0 = ˗ 9327.65 ± 7.9 kJ mol−1, the standard Gibbs free energy of formation ∆f G0298 = ˗9435.6 kJ mol-1.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 281
Author(s):  
Daniil Aleksandrov ◽  
Pavel Novikov ◽  
Anatoliy Popovich ◽  
Qingsheng Wang

Solid-state reaction was used for Li7La3Zr2O12 material synthesis from Li2CO3, La2O3 and ZrO2 powders. Phase investigation of Li7La3Zr2O12 was carried out by x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) methods. The thermodynamic characteristics were investigated by calorimetry measurements. The molar heat capacity (Cp,m), the standard enthalpy of formation from binary compounds (ΔoxHLLZO) and from elements (ΔfHLLZO), entropy (S0298), the Gibbs free energy of the Li7La3Zr2O12 formation (∆f G0298) and the Gibbs free energy of the LLZO reaction with metallic Li (∆rGLLZO/Li) were determined. The corresponding values are Cp,m = 518.135 + 0.599 × T − 8.339 × T−2, (temperature range is 298–800 K), ΔoxHLLZO = −186.4 kJ·mol−1, ΔfHLLZO = −9327.65 ± 7.9 kJ·mol−1, S0298 = 362.3 J·mol−1·K−1, ∆f G0298 = −9435.6 kJ·mol−1, and ∆rGLLZO/Li = 8.2 kJ·mol−1, respectively. Thermodynamic performance shows the possibility of Li7La3Zr2O12 usage in lithium-ion batteries.


Author(s):  
Aleksandr I. Lytkin ◽  
Viktor V. Chernikov ◽  
Olga N. Krutova ◽  
Svetlana A. Bychkova ◽  
Pavel D. Krutov

Depending on the chemical nature of the side radicals, amino acids can be divided into aromatic and aliphatic, as well as amino acids, the presence of non-polar or polar functional groups in the side radicals. Since the characteristics of individual amino acids in the protein are determined by the nature (physico-chemical properties) of their side radicals, which are in a hydrated state. It is also extremely important to study the thermodynamic characteristics of the hydration of the side radicals of amino acids of different chemical nature. To obtain empirical correlations that would establish a connection between the thermodynamic parameters of the interaction of dissolved compounds with the solvent and the size of the molecules to be dissolved (having different physico-chemical nature), it is necessary to accumulate a sufficient amount of experimental data on the heats of dissolution of amino acids. This will allow you to calculate the contribution of intermolecular interactions for different groups of molecules. By potentiometric method the protolytic equilibria in aqueous solutions of paraoxyphenylglycine were investigated. The measurements were carried out at a temperature of 298.15 K and an ionic strength of 0.25 (against the background of potassium nitrate). Calorimetric measurements were carried out on an ampoule calorimeter, with an isothermal shell, a thermistor temperature sensor KMT-14, and an automatic record of the temperature-time curve. The operation of the unit was verified by the integral enthalpy of dissolution in water of crystalline potassium chloride. The agreement between the experimental enthalpies of dissolution of KCl (cr) with the most reliable literature data indicates that there are no systematic errors in the calorimetric system. Samples of para-oxyphenylglycine were weighed on a VLP-200 scale with an accuracy of 2∙10-4 g. The confidence interval of the mean value of ΔH was calculated with a probability of 0.95. A paraxyphenylglycine preparation, «Reachim», was used in the work. The reagent was used without further purification. The RRSU program was used to determine the equilibrium composition of the solutions. Standard enthalpies of combustion and formation of crystalline paraxyphenylglycine were calculated. Thermal effects of dissolution of crystalline paraxyphenylglycine in water and in solutions of potassium hydroxide at 298.15 K were determined with the direct calorimetric method. Standard enthalpies of formation of amino acids and products of their dissociation in aqueous solution were calculated.


2021 ◽  
Vol 32 (5) ◽  
pp. 6682-6687
Author(s):  
Zhenjie Liu ◽  
Yudai Huang ◽  
Xingchao Wang ◽  
Yue Zhang ◽  
Juan Ding ◽  
...  

Author(s):  
Adelyna Oktavia ◽  
Kurnia Sembiring ◽  
Slamet Priyono

Hospho-material of olivine, LiMnPO4 identified as promising for cathode material generation next Lithium-ion battery and has been successfully synthesized by solid-state method with Li2Co3, 2MnO2, 2NH4H2PO4 as raw material. The influence of initial concentration of precursors at kalsinasi temperatures (400-800 ° C) flows with nitrogen. The purity and composition phase verified by x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), spectroscopy, energy Dispersive x-ray Analysis (EDS), Raman spectra. General investigation shows that there is a correlation between the concentration of precursors, the temperature and the temperature of sintering kalsinasi that can be exploited to design lithium-ion next generation.


2021 ◽  
Vol 1028 ◽  
pp. 62-67
Author(s):  
Yuyu R. Tayubi ◽  
Yati Maryati ◽  
Muhammad Abdan Syakuur ◽  
Diba G Auliya ◽  
Togar Saragi ◽  
...  

The samples of Eu2-xCexCuO4 (ECCO) with x = 0.10, 0.13, 0.17 and 0.20 have been synthesized by the solid reaction method without annealing process [1,2]. Each sample is covered by CuO powder to prevent excess oxygen entering the sample during heating process. The purpose of this research is to study the crystal structure and the level of phase purity in ECCO samples in the wide ranges of doping concentration of ECCO. The results of X-ray diffraction (XRD) characterization showed that the main peaks of T' tetragonal structure were observed in all samples. From the XRD analysis, it was found that the level of phase purity of ECCO was 100 % for x = 0.10, 100 % for x = 0.13, 79.5.% for x = 0.17, and 79.1 % for x = 0.20, respectively. For the lattice constant, it is found that both a and c-axis did not change significantly as the concentration increased. These results show that the synthesis method with CuO covering has succeeded in synthesizing materials with high phase purity although the constants do not change significantly when the concentration increased. However, there are some impurity phases found in high concentration of x that is probably due to the existence of excess oxygen, which was not fully absorbed by CuO Covering.


2020 ◽  
Vol 860 ◽  
pp. 69-74
Author(s):  
Iman Rahayu ◽  
Engela Evy Ernawati ◽  
Atiek Rostika Noviyanti ◽  
Yusra Linda ◽  
Diana Rakhmawaty ◽  
...  

In the recent years, LiFePO4 has been widely developed as a cathode for lithium ion batteries because it has high theoretical capacity (170 mAh/g), good stability and is also environmentally friendly. However, the poor electronic conductivity (~10-9 S/cm) and low diffusion coefficient of lithium ion (~10-15-10-14 cm2/s) are limiting its application. Some solutions to overcome this problem are carbon coating and doping metal ions. This study aims to determine the effect of Gd3+ ion doping on the electronic conductivity of LiFePO4/C. The synthesis method was used is carbothermal reduction with Fe2O3, Gd2O3, LiH2PO4 and carbon black reagents. The synthesized LiFe1-xGdxPO4/C was characterized using XRD, SEM-EDS, and four point probes. The results obtained showed that gadolinium ion doping increased the conductivity of LiFePO4/C from 1.8952 x10-6 to 8.69x10-6 Scm-1 using 0.07 mol ion Gd3+.


Sign in / Sign up

Export Citation Format

Share Document