scholarly journals Superionic Solid Electrolyte Li7La3Zr2O12 Synthesis and Thermodynamics for Application in All-Solid-State Lithium-Ion Batteries

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 281
Author(s):  
Daniil Aleksandrov ◽  
Pavel Novikov ◽  
Anatoliy Popovich ◽  
Qingsheng Wang

Solid-state reaction was used for Li7La3Zr2O12 material synthesis from Li2CO3, La2O3 and ZrO2 powders. Phase investigation of Li7La3Zr2O12 was carried out by x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) methods. The thermodynamic characteristics were investigated by calorimetry measurements. The molar heat capacity (Cp,m), the standard enthalpy of formation from binary compounds (ΔoxHLLZO) and from elements (ΔfHLLZO), entropy (S0298), the Gibbs free energy of the Li7La3Zr2O12 formation (∆f G0298) and the Gibbs free energy of the LLZO reaction with metallic Li (∆rGLLZO/Li) were determined. The corresponding values are Cp,m = 518.135 + 0.599 × T − 8.339 × T−2, (temperature range is 298–800 K), ΔoxHLLZO = −186.4 kJ·mol−1, ΔfHLLZO = −9327.65 ± 7.9 kJ·mol−1, S0298 = 362.3 J·mol−1·K−1, ∆f G0298 = −9435.6 kJ·mol−1, and ∆rGLLZO/Li = 8.2 kJ·mol−1, respectively. Thermodynamic performance shows the possibility of Li7La3Zr2O12 usage in lithium-ion batteries.

Author(s):  
Adelyna Oktavia ◽  
Kurnia Sembiring ◽  
Slamet Priyono

Hospho-material of olivine, LiMnPO4 identified as promising for cathode material generation next Lithium-ion battery and has been successfully synthesized by solid-state method with Li2Co3, 2MnO2, 2NH4H2PO4 as raw material. The influence of initial concentration of precursors at kalsinasi temperatures (400-800 ° C) flows with nitrogen. The purity and composition phase verified by x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), spectroscopy, energy Dispersive x-ray Analysis (EDS), Raman spectra. General investigation shows that there is a correlation between the concentration of precursors, the temperature and the temperature of sintering kalsinasi that can be exploited to design lithium-ion next generation.


2019 ◽  
Vol 92 (7) ◽  
pp. 1013-1019 ◽  
Author(s):  
P. A. Novikov ◽  
A. E. Kim ◽  
K. A. Pushnitsa ◽  
Wang Quingsheng ◽  
M. Yu. Maksimov ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
T. Minh Nguyet Nguyen ◽  
Vinh-Dat Vuong ◽  
Mai Thanh Phong ◽  
Thang Van Le

Molybdenum disulfide (MoS2), an inorganic-layered material similar to structure of graphite, was randomly dispersed onto the surface of functionalized multiwalled carbon nanotubes to synthesized nanocomposite MoS2/CNT. The as-obtained product was characterized via SEM, TEM, TGA, X-ray diffraction, and Raman spectroscopies. It was confirmed from XRD that MoS2 layers with interlayer spacing of 0.614 nm were successfully produced. TEM images and Raman spectra indicated a random distribution of 20 nm sized nanoflake MoS2 on the surface of MWNTs. The electrochemical performance of materials are expected to pave the way for the utilized anode material for lithium-ion batteries.


2014 ◽  
Vol 40 (7) ◽  
pp. 9107-9120 ◽  
Author(s):  
Xiaoting Lin ◽  
Rui Ma ◽  
Lianyi Shao ◽  
Miao Shui ◽  
Kaiqiang Wu ◽  
...  

2014 ◽  
Vol 636 ◽  
pp. 49-53
Author(s):  
Si Qi Wen ◽  
Liang Chao Gao ◽  
Jia Li Wang ◽  
Lei Zhang ◽  
Zhi Cheng Yang ◽  
...  

To improve the cycle performance of spinel LiMn2O4as the cathode of 4 V class lithium ion batteries, spinel were successfully prepared using the sol-gel method. The dependence of the physicochemical properties of the spinel LiCrxMn2-xO4(x=0,0.05,0.1,0.2,0.3,0.4) powders powder has been extensively investigated by using X-ray diffraction (XRD), scanning electron microscope (SEM), charge-discharge test and electrochemical impedance spectroscopy (EIS). The results show that as Mn is replaced by Cr, the initial capacity decreases, but the cycling performance improves due to stabilization of spinel structure. Of all, the LiCr0.2Mn1.8O4has best electrochemical performance, 107.6 mAhg-1discharge capacity, 96.1% of the retention after 50 cycles.


Sign in / Sign up

Export Citation Format

Share Document