scholarly journals New Way of Synthesis of Few-Layer Graphene Nanosheets by the Selfpropagating High-Temperature Synthesis Method From Bi-opolymers for Large-Scale Production - A Method of Utilization Waste From the Woodworking Industry for Clean Earth Tomorrow

Author(s):  
Alexander Voznyakovskii ◽  
Aleksey Vozniakovskii ◽  
Sergey Kidalov

For the first time, few-layer graphene (FLG) nanosheets were synthesized by the method of self-propagating high-temperature synthesis (SHS) from biopolymers (starch and lignin). We suggested that biopolymers (lignin, tree bark) and polysaccharides, in particular starch, could be an acceptable source of native cycles for the SHS process. The carbonization of biopolymers under the conditions of the SHS process was chosen as the basic method of synthesis. Chemical reactions, under the conditions of the SHS process, proceed according to a specific mechanism of nonsothermal branched-chain processes, which are characterized by the joint action of two fundamentally different process-accelerating factors - avalanche reproduction of active intermediate particles and self-heating. The method of obtaining FLG nanosheets included the thermal destruction of hydrocarbons in a mixture with an oxidizing agent. We used biopolymers as hydrocarbons and ammonium nitrate as an oxidizing agent. Thermal destruction was carried out in the mode of SHS, heating the mixture in a vessel at a speed of 20–30 oC/min to 150-200 oC and keeping at this temperature for 15–20 min with the discharge of excess gases into atmosphere. A combination of spectrometric research methods, supplemented by electron microscopy data, has shown that the particles of the carbonated product powder in their morphometric and physical parameters correspond to FLG nanosheets. An X-ray diffraction analysis of the indicated FLG nanosheets was carried out, which showed the absence of formations with a graphite crystal structure in the final material. The surface morphology was also studied and the features of the IR absorption of FLG nanosheets were analyzed. It is shown that the developed SHS method makes it possible to obtain FLG nanosheets with linear dimensions of tens of microns and a thickness of not more than 1-5 graphene layers (several graphene layers).

Author(s):  
Alexander Voznyakovskii ◽  
Anna Neverovskaya ◽  
Aleksey Vozniakovskii ◽  
Sergey Kidalov

A quantitative method is proposed to determine of Stone-Wales defects for carbon nanostructures with sp2 hybridization of carbon atoms. The technique is based on the diene synthesis reaction (Diels-Alder reaction). The proposed method was used to determine Stone-Wales defects in the few-layer graphene (FLG) nanostructures synthesized by the self-propagating high-temperature synthesis (SHS) process, in reduced graphene oxide (rGO) synthesized based on the method of Hammers and in the single-walled carbon nanotubes (SWCNT) TUBAL trademark, Russia. Our research has shown that the structure of FLG is free of Stone-Wales defects, while the surface concentration of Stone-Wales defects in TUBAL carbon nanotubes is 1.1×10-5 mol/m2 and 3.6×10-5 mol/m2 for rGO.


1991 ◽  
Vol 249 ◽  
Author(s):  
Thomas F. Crane ◽  
Ernesto Gutierrez-Miravete

ABSTRACTSelf-propagating high temperature synthesis (SHS) can be used to prepare near net refractory shapes which are difficult to produce by other methods. In SHS, green compacts capable of strong exothermal reaction are ignited at one end and transformed into the desired products by a self-propagating reaction. Physical processes involved in SHS include chemical kinetics, macroscopic transport phenomena and phase transformations. This paper describes a simplified mathematical model of the SHS process derived by combining the heat equation with the chemical reaction rate equation. The model equations are solved numerically to obtain representation of the SHS process. Parametric studies have been performed to investigate the relative importance of the physical parameters in the model.


2020 ◽  
Vol 263 ◽  
pp. 127213 ◽  
Author(s):  
Jun Cheng ◽  
Jiqiang Ma ◽  
Jiao Chen ◽  
Hui Tan ◽  
Qichun Sun ◽  
...  

2007 ◽  
Vol 43 (4) ◽  
pp. 239-242
Author(s):  
S. Kh. Suleimanov ◽  
O. A. Dudko ◽  
V. G. Dyskin ◽  
Z. S. Settarova ◽  
M. U. Dzhanklych

2015 ◽  
Vol 25 (12) ◽  
pp. 659-665
Author(s):  
Sin Hyong Joo ◽  
Hayk H. Nersisyan ◽  
Tae Hyuk Lee ◽  
Young Hee Cho ◽  
Hong Moule Kim ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 2426
Author(s):  
Vladimir Promakhov ◽  
Alexey Matveev ◽  
Nikita Schulz ◽  
Mikhail Grigoriev ◽  
Andrey Olisov ◽  
...  

Currently, metal–matrix composite materials are some of the most promising types of materials, and they combine the advantages of a metal matrix and reinforcing particles/fibres. Within the framework of this article, the high-temperature synthesis of metal–matrix composite materials based on the (Ni-Ti)-TiB2 system was studied. The selected approaches make it possible to obtain composite materials of various compositions without contamination and with a high degree of energy efficiency during production processes. Combustion processes in the samples of a 63.5 wt.% NiB + 36.5 wt.% Ti mixture and the phase composition and structure of the synthesis products were researched. It has been established that the synthesis process in the samples proceeds via the spin combustion mechanism. It has been shown that self-propagating high-temperature synthesis (SHS) powder particles have a composite structure and consist of a Ni-Ti matrix and TiB2 reinforcement inclusions that are uniformly distributed inside it. The inclusion size lies in the range between 0.1 and 4 µm, and the average particle size is 0.57 µm. The obtained metal-matrix composite materials can be used in additive manufacturing technologies as ligatures for heat-resistant alloys, as well as for the synthesis of composites using traditional methods of powder metallurgy.


Author(s):  
Xiaoqiao Li ◽  
Linming Zhou ◽  
Han Wang ◽  
Dechao Meng ◽  
Guannan Qian ◽  
...  

Crystalline materials are routinely produced via high-temperature synthesis and show size-dependent properties; however, a rational approach to regulating their crystal growth has not been established. Here we show that dopants...


Sign in / Sign up

Export Citation Format

Share Document