scholarly journals Dynamics of Intra-guild Predation Model with Stage Structure in Prey

2021 ◽  
Vol 18 (1) ◽  
pp. 67-77
Author(s):  
Hukmah Hukmah ◽  
Syamsuddin Toaha ◽  
Jeffry Kusuma

The Intra-guild predation model is an interaction between three species where two of them compete and prey on each other for the same resource. This study considers the stage structure of prey on and combines Beddington-DeAngelis and Holling type I as functional responses in the model. Furthermore, the equilibrium point and stability of the model will be analyzed. The numerical result at the equilibrium point shows that the solution converging toward the equilibrium point so that the population is stable and will not become extinct with increasing time. In addition, the population tends to be stable when the density of prey is larger than the predator.

2020 ◽  
Vol 1 ◽  
pp. 1-22
Author(s):  
Prabir Panja ◽  
Dipak Kumar Jana

In this investigation, a predator-prey interaction model among Phytoplankton, Zooplankton and Fish has been developed. In the absence of Zooplankton and Fish, it is assumed that Phytoplankton grows logistically. It is assumed that Zooplankton consumes Phytoplankton and Fish consumes Phytoplankton as well as Zooplankton. Holling type I & II functional responses have been considered to formulate the our proposed model. It is considered that Phytoplankton releases some toxin in the aquatic environment which makes some death in Zooplankton population. Quadratic harvesting is considered on Fish species. Boundedness of the solution of our proposed model has also been studied. Local stability of the system around each equilibrium point has been investigated. Also, the global stability of the interior equilibrium point has been studied. Existence condition of Hopf bifurcation of our proposed system has been studied. It is found that half saturation constant (α) can change the system dynamics. It is also found that the harvesting rate of Fish (E) and consumption rate of Zooplankton (γ1) has a significant role in the stability of the system. Again, it is found that the harvesting of Fish species will be increased if the selling price of Fish (p) and the annual discount (δ1) of Fish production cost increases. It is also found that the optimal harvesting rate of Fish decreases due to the increase of cost (c) of harvesting of Fish. Finally, some numerical simulation results have been presented to verify our analytical findings.


Faktor Exacta ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 94
Author(s):  
Iim Abdul Karim

<p><span><span lang="IN"><span style="font-size: medium;">Abstract. In this paper, the mathematical model we discuss the interactions among pests, predators, and effect of pesticides. Interactions between predators and pests use functional responses of Holling type I and type II and the growth of susceptible pests classes satisfied the logistic function. By this model, the existence and stability of the equilibrium point were performed. The existence of the equilibrium point, and were obtained which depend on the threshold parameter, while the equilibrium point did not depend on the parameter. The analysis of equilibrium point stability by this model discussed only on the local stability. To facilitate interpretation of the dynamics between predators, pests and the effects of pesticides, numerical simulations perform indicated by the changes in two parameters bifurcation analysis.</span></span></span></p><p><span><span lang="IN"><span style="font-size: medium;"> </span></span></span><span><span lang="IN">Keywords: Pest predator model, <span>stability,</span> numerical simulation, bifurcation</span></span></p>


2008 ◽  
Vol 2008 ◽  
pp. 1-15 ◽  
Author(s):  
Can-Yun Huang ◽  
Min Zhao ◽  
Hai-Feng Huo

A stage-structured three-species predator-prey model with Beddington-DeAngelis and Holling II functional response is introduced. Based on the comparison theorem, sufficient and necessary conditions which guarantee the predator and the prey species to be permanent are obtained. An example is also presented to illustrate our main results.


2011 ◽  
Vol 2011 ◽  
pp. 1-19 ◽  
Author(s):  
Yakui Xue ◽  
Xiafeng Duan

We invest a predator-prey model of Holling type-IV functional response with stage structure and double delays due to maturation time for both prey and predator. The dynamical behavior of the system is investigated from the point of view of stability switches aspects. We assume that the immature and mature individuals of each species are divided by a fixed age, and the mature predator only attacks the mature prey. Based on some comparison arguments, sharp threshold conditions which are both necessary and sufficient for the global stability of the equilibrium point of predator extinction are obtained. The most important outcome of this paper is that the variation of predator stage structure can affect the existence of the interior equilibrium point and drive the predator into extinction by changing the maturation (through-stage) time delay. Our linear stability work and numerical results show that if the resource is dynamic, as in nature, there is a window in maturation time delay parameters that generate sustainable oscillatory dynamics.


2020 ◽  
Vol 1 (1) ◽  
pp. 1-7
Author(s):  
Lazarus Kalvein Beay ◽  
Maryone Saija

We proposed and analyzed a stage-structure Rosenzweig-MacArthur model incorporating a prey refuge.  It is assumed that the prey is a stage-structure population consisting of two compartments known as immature prey and mature prey. The model incorporates the functional response Holling type-II. In this work, we investigate all the biologically feasible equilibrium points, and it is shown that the system has three equilibrium points. Sufficient conditions for the local stability of the non-negative equilibrium point of the model are also derived. All points are conditionally locally asymptotically stable. By constructing Jacobian matrix and determined eigenvalues, we analyzed the local stability of the trivial equilibrium and non-predator equilibrium points. Specifically for coexistence equilibrium point, Routh-Hurwitz criterion used to analyze local stability. In addtion, we investigated the effect of immature prey refuge. Our mathematical analysis exhibits that immature prey refuge have played a crucial role in the behavioral system. When the effect of immature prey refuge (constant m) increases, it is can stabilize non-predator equilibrium point, where all the species can not exists together. And conversely, if contant m decreases, it is can stabilize coexistence equilibrium point then all the species can exists together. The work is completed with a numerical simulation to confirmed analitical results


2016 ◽  
Vol 119 ◽  
pp. 91-107 ◽  
Author(s):  
Xiangmin Ma ◽  
Yuanfu Shao ◽  
Zhen Wang ◽  
Mengzhuo Luo ◽  
Xianjia Fang ◽  
...  

2004 ◽  
Vol 79 (2) ◽  
pp. 337-349 ◽  
Author(s):  
Jonathan M. Jeschke ◽  
Michael Kopp ◽  
Ralph Tollrian

2019 ◽  
Vol 29 (14) ◽  
pp. 1950199
Author(s):  
Mohammed Fathy Elettreby ◽  
Aisha Khawagi ◽  
Tamer Nabil

In this paper, we propose a discrete Lotka–Volterra predator–prey model with Holling type-I and -II functional responses. We investigate the stability of the fixed points of this model. Also, we study the effects of changing each control parameter on the long-time behavior of the model. This model contains a lot of complex dynamical behaviors ranging from a stable fixed point to chaotic attractors. Finally, we illustrate the analytical results by some numerical simulations.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Xuming Huang ◽  
Xiangzeng Kong ◽  
Wensheng Yang

We study the permanence of periodic predator-prey system with general nonlinear functional responses and stage structure for both predator and prey and obtain that the predator and the prey species are permanent.


Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1638-1645 ◽  
Author(s):  
Cédric Blanpain ◽  
Benhur Lee ◽  
Marie Tackoen ◽  
Bridget Puffer ◽  
Alain Boom ◽  
...  

CCR5 is the major coreceptor for macrophage-tropic strains of the human immunodeficiency virus type I (HIV-1). Homozygotes for a 32-base pair (bp) deletion in the coding sequence of the receptor (CCR5Δ32) were found to be highly resistant to viral infection, and CCR5 became, therefore, one of the paradigms illustrating the influence of genetic variability onto individual susceptibility to infectious and other diseases. We investigated the functional consequences of 16 other natural CCR5 mutations described in various human populations. We found that 10 of these variants are efficiently expressed at the cell surface, bind [125I]-MIP-1β with affinities similar to wtCCR5, respond functionally to chemokines, and act as HIV-1 coreceptors. In addition to Δ32, six mutations were characterized by major alterations in their functional response to chemokines, as a consequence of intracellular trapping and poor expression at the cell surface (C101X, FS299), general or specific alteration of ligand binding affinities (C20S, C178R, A29S), or relative inability to mediate receptor activation (L55Q). A29S displayed an unusual pharmacological profile, binding and responding to MCP-2 similarly to wtCCR5, but exhibiting severely impaired binding and functional responses to MIP-1α, MIP-1β, and RANTES. In addition to Δ32, only C101X was totally unable to mediate entry of HIV-1. The fact that nonfunctional CCR5 alleles are relatively frequent in various human populations reinforces the hypothesis of a selective pressure favoring these alleles.


Sign in / Sign up

Export Citation Format

Share Document