scholarly journals Perbandingan Metode Peramalan Jumlah Produksi Palm Kernel Oil (PKO) Menggunakan Metode Double Moving Average, Double Exponential Smothing dan Box Jenkins

2019 ◽  
Vol 16 (2) ◽  
pp. 162
Author(s):  
IKA MEIZA MAHARANI ◽  
ACHMAD FAUZAN

One of Indonesia's significant results is oil palm. The reality of this plantation is not only owned by the government (BUMN) but also the private sector. Every period, the company does forecasting in terms of production, especially for the next period. Among them is to set production targets, company operations, and financial planning. Based on this, a study was conducted with the aim to predict the amount of palm kernel oil (PKO) production at PT. Mitra Mendawai Sejati for the next six (6) months. The method used is Double Moving Average, Double Exponential Smoothing and Box Jenkins. While the data used is historical data from the amount of palm kernel oil production for five (5) years obtained from the company. Based on the results of the study, received the forecast value of the Suayap output in 2019 with the best method, namely the Double Exponential Smoothing method. Based on the forecast we got in January at 949181.5 Kg, February at 963505.8 Kg, March at 977830.1 Kg, April at 992154.4 Kg, May at 1006478.6 Kg and June 1020802.9 Kg with MSE value of 47031163817, and RMSE of 216866.7 and parameter values (optimum weighting) for α = 0.616667 and β = 0.1548939

2019 ◽  
Vol 9 (2) ◽  
Author(s):  
Rendra Gustriansyah ◽  
Wilza Nadia ◽  
Mitha Sofiana

<p class="SammaryHeader" align="center"><strong><em>Abstract</em></strong></p><p><em>Hotel is  a type of accommodation that uses most or all of the buildings to provide lodging, dining and drinking services, and other services for the public, which are managed commercially so that each hotel will strive to optimize its functions in order to obtain maximum profits. One such effort is to have the ability to forecast the number of requests for hotel rooms in the coming period. Therefore, this study aims to forecast the number of requests for hotel rooms in the future by using five forecasting methods, namely linear regression, single moving average, double moving average, single exponential smoothing, and double exponential smoothing, as well as to compare forecasting results with these five methods so that the best forecasting method is obtained. The data used in this study is data on the number of requests for standard type rooms from January to November in 2018, which were obtained from the Bestskip hotel in Palembang. The results showed that the single exponential smoothing method was the best forecasting method for data patterns as in this study because it produced the smallest MAPE value of 41.2%.</em></p><p><strong><em>Keywords</em></strong><em>: forecasting, linier regression, moving average, exponential smoothing.</em></p><p align="center"><strong><em>Abstrak</em></strong></p><p><em>Hotel merupakan jenis akomodasi yang mempergunakan sebagian besar atau seluruh bangunan untuk menyediakan jasa penginapan, makan dan minum serta jasa lainnya bagi umum, yang dikelola secara komersial, sehingga setiap hotel akan berupaya untuk mengoptimalkan fungsinya agar memperoleh keuntungan maksimum. Salah satu upaya tersebut adalah memiliki kemampuan untuk meramalkan jumlah permintaan terhadap kamar hotel pada periode mendatang. Oleh karena itu, penelitian ini bertujuan untuk meramalkan jumlah permintaan terhadap kamar hotel di  masa mendatang dengan menggunakan lima metode peramalan, yaitu regresi linier, single moving average, double moving average, single exponential smoothing, dan double exponential smoothing, serta untuk mengetahui perbandingan hasil peramalan dengan kelima metode tersebut sehingga diperoleh metode peramalan terbaik. Adapun data yang digunakan dalam penelitian ini merupakan data jumlah permintaan kamar tipe standar dari bulan Januari hingga November tahun 2018, yang diperoleh dari hotel Bestskip Palembang. Hasil penelitian menunjukkan bahwa metode single exponential smoothing merupakan metode peramalan terbaik untuk pola data seperti pada penelitian ini karena menghasilkan nilai MAPE paling kecil sebesar 41.2%.</em></p><strong><em>Kata kunci</em></strong><em>: peramalan, regeresi linier, moving average, exponential smoothing.</em>


2021 ◽  
Vol 8 (2) ◽  
pp. 117-122
Author(s):  
Sambas Sundana ◽  
Destri Zahra Al Gufronny

Permasalahan yang dihadapi PT. XYZ yaitu kesulitan dalam menentukan jumlah permintaan produk yang harus tersedia untuk periode berikutnya agar tetap dapat memenuhi kebutuhan pelanggan dan tidak menyebabkan penumpukan barang dalam jangka waktu yang lama terutama produk SN 5 ML yang memiliki permintaan jumlah paling besar dari produk lainnya. Tujuan dari penelitian ini yaitu menentukan metode peramalan yang tepat untuk meramalkan jumlah permintaan produk SN 5 ml periode Januari sampai dengan Desember 2021 Metode yang digunakan dalam penelitian ini yaitu metode peramalan Moving Average (MA), Weighted Moving Average (WMA), Single Exponential Smoothing (SES), dan Double Exponential Smoothing (DES). Adapun langkah langkah peramalan yang dilakukan yaitu menentukan tujuan peramalan,memilih unsur apa yang akan diramal, menentukan horizon waktu peramalan (pendek, menengah, atau panjang), memilih tipe model peramalan, mengumpulkan data yang di perlukan untuk melakukan peramalan, memvalidasi dan menerapkan hasil peramalan Berdasarkan perhitungan didapat metode peramalan dengan persentase tingkat kesalahan terkecil dibandingkan dengan metode lainnya yaitu  metode Moving Average (MA) dengan hasil yang diperoleh permintaan produk SN 5 ML pada bulan Januari sampai dengan Desember 2021 yaitu sebanyak 22.844.583 unit


Academia Open ◽  
2021 ◽  
Vol 4 ◽  
Author(s):  
Fatikhul Ikhsan ◽  
Sumarno

Crime is a form of social action that violates legal norms relating to acts of seizing property rights of others, disturbing public order and peace, and killing one or a group of people. This has always been a concern for residents in various places in the Ngoro sub-district, therefore this information system was created to help police officers to find out where crimes have occurred. This information sfystem was created to predict the area in Ngoro sub-district using the Double Exponential Smoothing method. So that this system can predict which areas in the next month there will be no crime, and can assist the public in reporting the occurrence of criminal acts without having to go to the police station first. The Double Exponential Smoothing method was chosen by the author because this method can be used. The data used is data on theft of crime from 2017 – 2019. The results of forecasting in one village in Ngoro sub-district such as Manduro are 0.07426431198 if rounded up to 0.1 which is categorized as low crime and has a MAPE value of 7.94%. Based on the MAPE value of the forecasting results, it can be concluded that a good constant is between 0.1 – 0.3.


2020 ◽  
Vol 4 (3) ◽  
pp. 806
Author(s):  
Nurul Adha Oktarini Saputri ◽  
Nurul Huda

Prediction is an activity to predict a situation that will occur in the future by passing tests in the past. One way to get sales information in the future is to make sales forecasting. This sales forecast uses the Double Exponential Smoothing method because this method predicts by smoothing or smoothing past data by taking an average of several years to estimate the value of the coming year and this method uses the time series method. The results of this study are the right sales prediction information system, in order to determine the existing inventory of goods in accordance with the demand (demand) so that there is no overstock or lack of inventory in the future


Author(s):  
Nugroho Arif Sudibyo ◽  
Ardymulya Iswardani ◽  
Arif Wicaksono Septyanto ◽  
Tyan Ganang Wicaksono

Tujuan dari penelitian ini adalah untuk mengetahui model peramalan yang paling baik digunakan untuk meramalkan inflasi di Indonesia dengan data inflasi Januari 2015 sampai dengan Mei 2020. Penelitian ini menggunakan beberapa metode peramalan. Berdasarkan metode peramalan yang dilakukan didapatkan hasil peramalan yang paling baik dilihat dari MAPE, MAD dan MSD adalah single exponential smoothing. Selanjutnya, hasil peramalan menunjukkan bahwa tingkat inflasi di Indonesia pada Agustus 2020 sebesar  1,41746%.


2020 ◽  
Author(s):  
Teshome Hailemeskel Abebe

AbstractThe main objective of this study is to forecast COVID-19 case in Ethiopiausing the best-fitted model. The time series data of COVID-19 case in Ethiopia from March 14, 2020 to June 05, 2020 were used.To this end, exponential growth, single exponential smoothing method, and doubleexponential smoothing methodwere used. To evaluate the forecasting performance of the model, root mean sum of square error was used. The study showed that double exponential smoothing methods was appropriate in forecasting the future number ofCOVID-19 cases in Ethiopia as dictated by lowest value of root mean sum of square error. The forecasting model shows that the number of coronavirus cases in Ethiopia grows exponentially. The finding of the results would help the concerned stakeholders to make the right decisions based on the information given on forecasts.


2021 ◽  
Vol 13 (2) ◽  
pp. 155
Author(s):  
Dwi Anggraeni ◽  
Sri Maryani ◽  
Suseno Ariadhy

Poverty is a major problem in a country. The Indonesian government has made various efforts to tackle the problem of poverty. The main problem faced in poverty alleviation is the large number of people living below the poverty line. Therefore, this study aims to predict the poverty line in Purbalingga Regency for the next three periods as one of the efforts that can be made by the government in poverty alleviation. The method used in this study is a one-parameter linear double exponential smoothing from Brown. The software used in this research is Zaitun Time Series and Microsoft Excel. The steps taken are determining the forecasting objectives, plotting time series data, determining the appropriate method, determining the optimum parameter value, calculating the single exponential smoothing value, calculating double exponential smoothing value, calculate the smoothing constant value, calculate the trend coefficient value and perform forecasting. Based on the calculation results, the optimum alpha parameter value is 0.7 with MAPE value of 1.67866%, which means that this forecasting model has a very good performance. The forecast value of the poverty line in Purbalingga Regency for 2021 is Rp. 396,516, in 2022 it is Rp. 417,818, and in 2023 it is Rp. 439,120.


Sign in / Sign up

Export Citation Format

Share Document