scholarly journals Penilaian Status Kesuburan Tanah Desa Tijayan Kecamatan Manisrenggo Kabupaten Klaten

2021 ◽  
Vol 5 (2) ◽  
pp. 48-54
Author(s):  
Elvina Septianta Molle ◽  
Andree Setiawan Wijaya ◽  
Alfred Jansen Sutrisno

Tijayan Village is located in Manisrenggo District, Klaten Regency, which has an area of agricultural land in the form of rice fields which is 105.80 ha of 155.3 ha of the village area. The extent of agricultural land in Tijayan Village needs to be maintained to increase agricultural products ranging from rice, secondary crops, and horticulture commodities. The researcher found a lack of information about soil maintenance in Tijayan Village. Therefore, the researcher conducted this research to determine and study the soil fertility and soil management efforts based on the limiting factors of fertility in Tijayan Village. In addition, soil fertility assessment is based on a desk study, detailed survey, soil analysis, making fertility distribution maps, and descriptive analysis. Determination of soil fertility status based on Soil Research Guidelines published by Soil Research Center, Bogor Indonesia, with parameters of cation exchange capacity, base saturation, total phosphorus, total potassium, and C- organic. Map made by using the ArcGIS 10.4 application. The fertility of Tijayan Village is categorized as low soil fertility class. The limiting factors for soil fertility are soil cation exchange capacity 3.47 me/ 100 g until 12.33 me/100g, total potassium < 10 mg/100g, and C- organic 1.213% - 2.286% . Consequently, management needs to be done by adding organic matter to the soil, fertilizing organically or inorganically, and the principle of healthy plant cultivation for rice fields.

Author(s):  
Safwan A. Mohammed Safwan A. Mohammed

Land evaluation is one of the most important tools for integrated land use management for sustainable agricultural and land use planning. The aim of this study is to evaluate the land suitability for current land use in akkar plain- Tartous Governorate. Depending on the elevation and land use, nine soil profiles representing the main physiographic units have been chosen. Soil samples were collected for conducting some chemical and physical analyses such as: soil texture (sand%, silt% and clay%), the content of organic matter OM, Cation Exchange Capacity CEC (cmol(+)/kg -1clay). The results of the soil analysis showed that the soil texture was Clay, and the pH values were between 7.13-8.5. Furthermore, The cation exchange capacity were ranging from (12-33) (cmol(+)/kg -1clay). Results of land evaluation showed that the limiting factors either fertility factors such as high pH in the villages of Beit-kamouna, Majdaloun-albaher and Dier-hbash, or physical factors such as shallowness depth of soil. The study concluded that the suitability class ranged from S2 to N2, which emphasis the importance of reconsidering the type of land use in the study area.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 281 ◽  
Author(s):  
Karin L. Hastings ◽  
Lauren E. Smith ◽  
Michael L Lindsey ◽  
Luke C. Blotsky ◽  
Gloria R. Downing ◽  
...  

Soil microalgae live on small communities that change structure depending on many factors. Some of these factors include soil pH, agricultural practices as well as pesticide and herbicide treatments.  The size and activity of these soil microbial communities is an indicator of health, quality and fertility necessary for sustainable agriculture.  Methods:A commercial proprietary suspension of microalgae GOgreen®was applied at different concentrations through a center pivot irrigation system to a crop of cultivated corn (Zea mays) during six months.  Experimental plots of 0.5 acres each were planted in four rows. Corn (34,000 plants/acre) was planted in May and harvested in November allowing each plot to be studied for 6 months. In addition, one plot was planted for a second year to study the effects of consecutive planting and harvesting on algae populations in the soil. Soil samples were collected at a depth of 6 inches. Microalgae species identification was based on morphological criteria. Soil analysis included organic matter content (OM), pH and cation exchange capacity (CEC).Results:Treatment with GOgreen®has significant and measurable positive effects on soil OM content, CEC, pH and microalgae species diversity.Conclusions:  It was demonstrated through this study that GOgreen®increased diatom numbers and microalgae species diversity showing a restorative effect on soil quality after herbicide treatment in heavily farmed soil. Additionally, GOgreen®lowers the pH in soils with a pH higher than 7.0 emerging as an economical alternative that is safe for humans and the environment.


2012 ◽  
Vol 28 (5) ◽  
pp. 427-435 ◽  
Author(s):  
Jessica L. Deichmann ◽  
Catherine A. Toft ◽  
Peter M. Deichmann ◽  
Albertina P. Lima ◽  
G. Bruce Williamson

Abstract:Soil fertility and plant productivity are known to vary across the Amazon Basin partially as a function of geomorphology and age of soils. Using data on herpetofaunal abundance collected from 5 × 5 m and 6 × 6 m plots in mature tropical forests, we tested whether variation in community biomass of litter frogs and lizards across ten Neotropical sites could be explained by cation exchange capacity, primary productivity or stem turnover rate. About half of the variation in frog biomass (48%) could be attributed to stem turnover rate, while over two-thirds of the variation in lizard biomass (69%) was explained by primary productivity. Biomass variation in frogs resulted from variation in abundance and size, and abundance was related to cation exchange capacity (45% of variation explained), but size was not. Lizard biomass across sites varied mostly with individual lizard size, but not with abundance, and size was highly dependent on primary productivity (85% of variation explained). Soil fertility and plant productivity apparently affect secondary consumers like frogs and lizards through food webs, as biomass is transferred from plants to herbivorous arthropods to secondary consumers.


Author(s):  
Niken Puspita sari ◽  
Teguh Iman Santoso ◽  
Surip Mawardi

Soil fertility is one of the most important factors influencing plant growth and productivity and it depends on the availability and quantity of nutrients in the soil. To study soil fertility status of an area, a study on soil chemistry and physics has to be conducted. The aim of this study was to investigate soil fertility status of smallholding Arabica coffee farms based on altitude and shades trees utilization. This research was carried out in April-August 2012 at IjenRaung highland areas by field survey. The results showed that the soil contained high content of organic carbon, nitrogen total, and C/N ratio; low available phosphorus; moderate to high cation exchange capacity, and low base cation of calcium, magnesium, and potassium; as well as slightly low pH. Higher altitude tended to have higher C organic and N total content, C/N ratio as well as pH. In contrast, in lower altitude tended to have lower available P, base saturation, as well as Ca, Mg, and K content. The dominant shade trees for coffee farming at the Ijen-Raung highland areas were suren (Toona sureni) , dadap (Erythrina sp.), kayumanis (Cinnamomum zeylanicum), pinus (Pinus mercusii), and kayu putih (Eucalyptus globulus). Different shade tree species resulted in different of soil fertility. Shade trees tended to influence cation exchange capacity from moderate to high, pH slightly acid, high base saturation, and low P available. Suren tree influenced better base cation than that of other trees but dadap tree was better in increasing soil fertility. Key word: Soil fertility, arabica coffee, andisol, shade trees, smallholding


2019 ◽  
Vol 24 (1) ◽  
pp. 35-53
Author(s):  
Kathleen Cedeño

Soil quality is crucial to global food production security. However, research data on soil quality, which is vital to enhancing soil fertility and crop yield, is limited particularly on the soil in the rice fields located in Langkong, Mlang, Cotabato. This study aims to assess the soil quality of one of the organic rice farms in said area. Soil samples were collected in thirty-one (31) paddies for two sampling periods: thirty (30) days after harvest and thirty (30) days after rice transplanting. Eight (8) soil indicators representing soil physicochemical characteristics were measured from 0-15 cm depth; the indicators were soil texture, water holding capacity, pH, exchangeable phosphorus, extractable potassium, total organic matter, electrical conductivity, and cation exchange capacity. Results reveal that soils in the studied area are characterized by clay loam with moderate water-holding capacity of about 62.57% and 60.57% for both sampling periods, respectively. The soil is strongly acidic (5.3 and 5.5) and has a low amount of organic matter (2.16% and 1.57%) and exchangeable P (8.55 ppm and 2.48 ppm), although it has marginal extractable K (80.77 ppm and 91.10 ppm). Also, the soils are non-saline and have low cation exchange capacity. The findings signify that the soils have insufficient fertility to sustain the optimal growth of the rice plants which can potentially reduce the yield of rice production. Thus, amendment of the soil quality and enhancement of soil management practices should be taken into consideration to further improve soil fertility to ensure productivity and profitability of farmers.


1966 ◽  
Vol 17 (3) ◽  
pp. 317 ◽  
Author(s):  
AJ Rixon

Organic matter and soil fertility changes under irrigated pastures were followed for 5 years at Deniliquin, N.S.W. The effects of three annual pastures and of three perennial pastures were studied. Four years after their establishment an organic matter layer (mat) had formed under all pastures, and after its formation there was no further accumulation of organic carbon in the 0–3 in. soil horizon. The mean annual increase in organic carbon was 625 lb/acre under annual pastures and 1146 lb/acre under perennial pastures. The carbon/nitrogen ratios of both soil and mats, and the relationships of both organic carbon and nitrogen to the cation exchange capacity of the mats, were similarly affected by the annual and perennial pastures. The heterogeneous nature of the mats obscured any differences in their carbon/nitrogen ratios, which ranged from 12.8 to 22.0. The cation exchange capacity of the 0–3 in. soil horizon remained unchanged. The cation exchange capacity of the organic matter of the mats was approximately 100 m-equiv./100 g. After mat formation the underlying soil had a pH of approximately 6.0 under clovers and 6.5 under ryegrasses. The pH values of the mats ranged from 5.9 to 6.6.


2006 ◽  
Vol 86 (1) ◽  
pp. 133-139 ◽  
Author(s):  
Edouard Lemire ◽  
Kate M Taillon ◽  
William H. Hendershot

Controlling soil pH is important to ensure good crop yield. This study was conducted to determine whether the accuracy of the existing Shoemaker-McLean-Pratt (SMP) pH-buffer method could be improved by using the pH-dependent cation exchange capacity curve (CECpd). Soil pH, SMP and CECpd measurements were performed on 18 acid surface horizon soil samples, with textures from sandy loam to clay loam. These soils were incubated with three levels of calcium carbonate for 12 wk, after which the soil pH and the effective cation exchange capacity (CECe) were measured. The correlation coefficient (R2) for the CECpd and CECe curves was 0.96. The main factor affecting the slope of the curves is the soil organic matter content. The increase of CECe in the soil was also found to be directly proportional to the amount of lime applied, regardless of the type of soil. By using the slope of the Qv versus pH curve for each soil and the relationship between CECe and lime application, we were able to determine the lime required to raise the soil pH in water to 6.5. As an alternative to the current practice of using the SMP buffer, we propose that it should be possible to estimate the pH-dependent CEC curve from measurable soil properties (e.g., organic matter) and to estimate the lime requirement as the difference in CECpd between the existing and desired pH values. Once the slope of the Qv/pH relationship has been determined or estimated for a soil, the only measurement necessary for calculating lime requirement in subsequent years would be the soil pH. The proposed method would provide lime requirement estimates while decreasing the annual cost of soil analysis. Key words: Lime requirement, cation exchange capacity, Non-Ideal Competitive Adsorption, soil properties, organic matter, Fe oxides


2021 ◽  
Vol 6 (1) ◽  
pp. 47
Author(s):  
Mirna Anriani Siregar ◽  
Azwar Ma'as ◽  
Makruf Nurudin

The use of mineral soil analysis procedures in peat soils is considered unsuitable. Peat soil is vulnerable to disturbance, which leads to the damage of peat inert structure, such as the sifting and drying process. The objective of this study was to obtain the proper methods of preparation and extraction to be used in peat soils that can reflect the conditions on field. The experiment was carried out in the laboratory of Soil Science Department UGM by using the peat soil samples taken from Padang Island, Riau, arranged in a factorial randomized block design with three factors (peat soil preparation, the extraction method, and the levelof peat maturity). The variables observed included the available cation and Cation Exchange Capacity (CEC) of the peat soil. The results showed that there was no significant effect of the treatment interactions on each variable observed. The preparation method for original soil at each level of peat maturity reflected more of the physical condition on the field more than other methods. Meanwhile, sapric peat showed significant effect on cations and CEC. After being converted to bulk density (BD) values at each level of peat maturity, the result of the leaching extraction method showed that the value of available cation and CEC that reflected more of the value on the field. The peat soil analysis method should be carried out without air drying and shaking extraction treatment for further research.


Sign in / Sign up

Export Citation Format

Share Document