scholarly journals The minimal length case of the Klein Gordon equation with hyperbolic cotangent potential using Nikivorof-Uvarof Method

Author(s):  
Isnaini Lilis Elviyanti ◽  
Ahmad Aftah Syukron

<p class="Abstract"><span lang="EN-GB">The case of minimal length is applied for the Klein Gordon equation with hyperbolic cotangent potential. The Klein Gordon equation for minimal length case is solved used to approximate solution. The energy eigenvalue and wave function are investigated by the Nikivorof-Uvarof method.</span></p>

2021 ◽  
Author(s):  
Sangwha Yi

Dirac equation is a one order-wave equation. Wave function uses as a probability amplitude in quantum mechanics. We make Dirac Equation from wave function, Type A in cosmological inertial frame.The Dirac equation satisfy Klein-Gordon equation in cosmological inertial frame.


2021 ◽  
Author(s):  
Sangwha Yi

In the general relativity theory, we find Klein-Gordon wave functions in Robertson-Walker and Schwarzschild space-time. Specially, this article is that Klein-Gordon wave equations is treated by gauge fixing equations in Robertson-Walker space-time and Schwarzschild space-time.


2021 ◽  
Author(s):  
Ekwevugbe Omugbe ◽  
Omosede Eromwon Osafile ◽  
Etido P. Inyang ◽  
Arezu Jahanshir

Abstract The energy levels of the Klein-Gordon equation in hyper-radial space under the Deng-Fan potential energy function are studied by the SWKB and WKB approximation methods. We obtained the analytic solution of the energy spectra and the ground state wave function in closed form. Furthermore, we obtained the energy equation corresponding to the Schrodinger equation by invoking the non-relativistic limit. The variations of the non-relativistic N-dimensional energy spectra with the potential parameters and radial quantum number are investigated. The energy levels are degenerate for N= 2, N=4 and increase with the dimensionality number. The ground state wave function and its gradient are continuous at the boundary r=0,r=∞. Our results for the energy spectra are in excellent agreement with the ones obtained by other analytical methods where similar centrifugal approximations were applied. We show that the semi-classical methods notably the SWKB and WKB approximation still offer an effective and the simplest approach for solving the bound state problems in theoretical physics.


2021 ◽  
Author(s):  
Sangwha Yi

Klein-Gordon equation is a relativistic wave equation. It treats spinless particle. The wave functioncannot use as a probability amplitude. We made Klein-Gordon equation in Rindler space-time. In this paper,we make free particle’s wave function as the solution of Klein-Gordon equation in Rindler space-time.


Author(s):  
P. G. Lasy ◽  
I. N. Meleshko

The mixed problem for the telegraph equation well-known in electrical engineering and electronics, provided that the line is free from distortions, is reduced to a similar problem for one-dimensional inhomogeneous wave equation. An effective way to solve this problem is based on the use of special functions – polylogarithms, which are complex power series with power coefficients, converging in the unit circle. The exact solution of the problem is expressed in integral form in terms of the imaginary part of the first-order polylogarithm on the unit circle, and the approximate one – in the form of a finite sum in terms of the real part of the dilogarithm and the imaginary part of the third-order polylogarithm. All the indicated parts of the polylogarithms are periodic functions that have polynomial expressions of the corresponding degrees on an interval of length in the period, which makes it possible to obtain a solution to the problem in elementary functions. In the paper, we study a mixed problem for the telegrapher’s equation which is well-known in applications. This problem of linear substitution of the desired function witha time-exponential coefficient is reduced to a similar problem for the Klein – Gordon equation. The solution of the latter can be found by dividing the variables in the form of a series of trigonometric functions of a line point with time-dependent coefficients. Such a solution is of little use for practical application, since it requires the calculation of a large number of coefficients-integrals and it is difficult to estimate the error of calculations. In the present paper, we propose another way to solve this problem, based on the use of special He-functions, which are complex power series of a certain type that converge in the unit circle. The exact solution of the problem is presented in integral form in terms of second-order He-functions on the unit circle. The approximate solution is expressed in the final form in terms of third-order He-functions. The paper also proposes a simple and effective estimate of the error of the approximate solution of the problem. It is linear in relation to the line splitting step with a time-exponential coefficient. An example of solving the problem for the Klein – Gordon equation in the way that has been developed is given, and the graphs of exact and approximate solutions are constructed.


Sign in / Sign up

Export Citation Format

Share Document