Design Methodology for Modularity Based on Life Cycle Scenario

2009 ◽  
Vol 3 (1) ◽  
pp. 40-48 ◽  
Author(s):  
Shinichi Fukushige ◽  
◽  
Yoichiro Inoue ◽  
Keita Tonoike ◽  
Yasushi Umeda

Minimizing the environmental load and cost throughout the product life cycle requires appropriate life cycle design as well as product design. In life cycle design, we must determine the life cycle scenario at an early stage and design the product to realize this scenario. Modularity is a key to linking life cycle scenario to an appropriate product architecture because modular architecture increases performance in life cycle processes, such as disassembly, recycling, maintenance, reuse, and upgrading, by unifying components applicable to the same lifecycle scenario. We propose a method for determining modular structure based on life cycle scenario by evaluating the similarity among lifecycle-related components attributes. We also evaluate the modular structure's geometric feasibility using an index indicates rigidity and compactness of the modules.

Author(s):  
C-y Tung ◽  
M H Wang

Increasing awareness of environmental burdens has led companies and designers to initiate design for the environment (DFE) programmes, which consider the design of products from the ‘cradle to grave’ and is also known as ‘life-cycle design’. In this paper, the use of a novel environmental performance technique to be used at the early stage of product design is presented. This technique, which is to be used as a framework for green product design, is demonstrated in this paper by evaluating the environmental performance between plastic and steel fuel tanks. The fuel tank comparison can be divided into five steps. In the first four steps, a modified house of quality (HOQ) is used to analyse the performance of fuel tanks in terms of requirements of environmentally conscious design. The final step is an overall assessment that synthesizes the results from the previous four analyses. As a result, the comprehensive environmental effects in the whole life cycle of fuel tanks are captured in the early stage of design.


Author(s):  
Shinsuke Kondoh ◽  
Nozomu Mishima

Environmental consciousness has gained increasing interest in recent years, and product life cycle design that aims to maximize total value while minimizing environmental load and costs should be implemented. To achieve that, the processes of idea generation and decision-making for eco-business strategies, as well as the design of a target product and its life cycle options, should be systematically supported. This paper proposes a strategic decision-making method for eco-business planning so that a designer can easily find a set of eco-business ideas that effectively improve environmental and economic performance simultaneously. A decision-making procedure based on this method is also illustrated with a simplified example of a laptop computer business.


2002 ◽  
Vol 49 (3) ◽  
pp. 253-265 ◽  
Author(s):  
Zhi Gang Xu ◽  
John H. Frazer ◽  
Ming Xi Tang

2009 ◽  
Vol 75 (6) ◽  
pp. 725-730 ◽  
Author(s):  
Shinichi FUKUSHIGE ◽  
Keita TONOIKE ◽  
Yasushi UMEDA ◽  
Shinsuke KONDOH

1995 ◽  
Vol 117 (B) ◽  
pp. 42-47 ◽  
Author(s):  
K. Ishii

Life-cycle engineering seeks to incorporate various product life-cycle values into the early stages of design. These values include functional performance, manufacturability, serviceability, and environmental impact. We start with a survey of life-cycle engineering research focusing on methodologies and tools. Further, the paper addresses critical research issues in life-cycle design tools: design representation and measures for life-cycle evaluation. The paper describes our design representation scheme based on a semantic network that is effective for evaluating the structural layout. Evaluation measures for serviceability and recyclability illustrate the practical use of these representation schemes.


Author(s):  
YASUSHI UMEDA ◽  
AKIRA NONOMURA ◽  
TETSUO TOMIYAMA

Environmental issues require a new manufacturing paradigm because the current mass production and mass consumption paradigm inevitably cause them. We have already proposed a new manufacturing paradigm called the “Post Mass Production Paradigm (PMPP)” that advocates sustainable production by decoupling economic growth from material and energy consumption. To realize PMPP, appropriate planning of a product life cycle (design of life cycle) is indispensable in addition to the traditional environmental conscious design methodologies. For supporting the design of a life cycle, this paper proposes a life-cycle simulation system that consists of a life-cycle simulator, an optimizer, a model editor, and knowledge bases. The simulation system evaluates product life cycles from an integrated view of environmental consciousness and economic profitability and optimizes the life cycles. A case study with the simulation system illustrates that the environmental impacts can be reduced drastically without decreasing corporate profits by appropriately combining maintenance, reuse and recycling, and by taking into consideration that optimized modular structures differ according to life-cycle options.


Author(s):  
Patrick Di Marco ◽  
Charles F. Eubanks ◽  
Kos Ishii

Abstract This paper describes a method for evaluating the compatibility of a product design with respect to end-of-life product retirement issues, particularly recyclability. Designers can affect the ease of recycling in two major areas: 1) ease of disassembly, and 2) material selection for compatibility with recycling methods. The proposed method, called “clumping,” involves specification of the level of disassembly and the compatibility analysis of each remaining clump with the design’s post-life intent; i.e., reuse, remanufacturing, recycling, or disposal. The method uses qualitative knowledge to assign a normalized measure of compatibility to each clump. An empirical cost function maps the measure to an estimated cost to reprocess the product. The method is an integral part of our life-cycle design computer tool that effectively guides engineers to an environmentally responsible product design. A refrigerator in-door ice dispenser serves as an illustrative example.


Sign in / Sign up

Export Citation Format

Share Document