Mini Special Issue on Machine Tool Structure and its Design Optimization

2015 ◽  
Vol 9 (6) ◽  
pp. 679-679
Author(s):  
Hidenori Shinno

Demands for machine tools that are highly accurate, productive, flexible, and compact have been growing in the aerospace, automotive, energy, factory automation, and other industries. Rationally meeting these severe, complex requirements has led to numerous research and development activities involving machine tools. Few machine tool technologies have been established, however, despite the machine tool industry’s long history. Within the next several years, the rapid change and enlargement of the This mini special issue on machine tool structure and its design optimization features 8 papers classified under the following themes: - Enhancing high static and dynamic rigidity - Minimizing and optimizing thermal deformation - Proposing new structural analysis methods for machine tools - Selecting and applying new structural materials to the machinetool structure - Applying new structural designs and mechanisms These papers present new design concepts, design methods, and innovative examples in machine tool development. I believe that successfully combining these core technologies will provide machine tool compatible with future manufacturing environments. In closing, I would like to express my sincere gratitude to the authors and reviewers for their interesting and dedicated contributions to this special issue.

2014 ◽  
Vol 536-537 ◽  
pp. 1326-1332 ◽  
Author(s):  
Bo Luo ◽  
Bin Li ◽  
Xin Yong Mao ◽  
Hui Cai

For application in large machine tools, the machined part quality, accuracy as well as machining speed depende greatly on the dynamics of the structure. In this paper, an active-excitation modal analysis (AEMA), using inertial force of the moving slider to excite the structural modes, is proposed. Modal parameters of the machine tool structure estimated by AEMA are experimentally validated. Since the artificial excitation produced by elaborate excitation equipment is replaced by the inertial force of the slider, the proposed method is much more practical and economical than traditional methods.


1983 ◽  
Vol 105 (1) ◽  
pp. 88-96 ◽  
Author(s):  
M. Yoshimura ◽  
T. Hamada ◽  
K. Yura ◽  
K. Hitomi

This paper proposes a design optimization method in which simplified structural models and standard mathematical programming methods are employed in order to optimize the dynamic characteristics of machine-tool structures in practical applications. This method is composed of three phases: (1) simplification, (2) optimization, and (3) realization. As design variables employed in this optimization are greatly reduced, machine-tool structures are optimized effectively in practice. With large design changes being conducted through this multiphase procedure, dynamic characteristics of machine tools can be greatly improved. This method is demonstrated on a structural model of a vertical lathe.


1974 ◽  
Vol 96 (1) ◽  
pp. 187-195 ◽  
Author(s):  
J. Tlusty ◽  
K. C. Lau ◽  
K. Parthiban

The paper recapitulates the method of analyzing stability against chatter of machine tools as it has been practised by one of the authors for many years. Several new features of the method are presented and, mainly, comments are given on the use of shock excitation for determining both the receptances of the structure and its mode shapes. The method itself consists of comparing results of cutting tests and of excitation tests for various directional orientations of the cut in the structure and of identifying the contribution of the individual modes to the resulting degree of stability.


2002 ◽  
Vol 01 (01) ◽  
pp. 67-87 ◽  
Author(s):  
BYUNG-KWON MIN ◽  
ZHENGDONG HUANG ◽  
ZBIGNIEW J. PASEK ◽  
DEREK YIP-HOI ◽  
FORBES HUSTED ◽  
...  

This paper presents a new integrated approach for simulation developed to improve the accuracy of virtual manufacturing environments. While machine tool simulation and virtual manufacturing for factory simulation have been frequently used in early stage plant development, each of these technique has been researched and implemented separately. This paper focuses on the utilization of real-time simulation of machine tools or active axes in manufacturing systems and integration of this simulation capability with virtual manufacturing environments. Machine-level simulation results are generated in real-time with a real machine tool controller and are fed to a virtual manufacturing environment. To integrate these two simulation techniques, system-level software is utilized as a communication platform. This system-level software was originally developed to control and configure whole manufacturing systems. The method has been successfully implemented within a testbed with full-scale machine tools. The results demonstrate that the proposed method advances the virtual manufacturing environments toward improved accuracy of factory level simulation, reduced effort for modeling and expanded functionality of machine-level simulations.


2012 ◽  
Vol 6 (3) ◽  
pp. 251-251
Author(s):  
Masaru Nakano ◽  
Nobuhiro Sugimura

With machine tools evolving with the hardware and control whose dramatic advances are expanding the field, requirements for performance have grown tougher. These have made it more complicated to design, produce, and maintain machine tool systems. This has also ensured that performance evaluation and prediction technology play an increasingly important and active role in these areas. Green manufacturing technology (GM) and green supply chain management (GrSCM) are becoming increasingly important as awareness of global warming, energy security, pollution, metal shortages, etc., grow. Although sustainability has economic and social dimensions, the objective of GMand GrSCM is to enhance environmental sustainability. IJAT published a special issue on Design and Manufacturing Toward Sustainability in January 2009. Global manufacturing networks and eco-city projects are increasingly widespread. This special issue therefore includes GrSCM, and eco-business issues, together with GM and green-product design. The focus here is on opening a scientific discussion on these topics through considering which challenges should be addressed. This special issue covers the following proposals: 1. Key success factors and eco-business methodology 2. Efficient scheduling algorithms for production, logistics, and projects as economic improvement becomes more environmentally friendly 3. Simulation for analyzing supply chain robustness 4. Surveys summarizing conventional studies related to green supply chains Since the proposed topics in this special issue are somewhat limited, we encourage you to new promising topics. Most conventional GrSCM and sustainable supply-chain studies, for example, cover only concepts and surveys. Efficient algorithms for logistics in factories or supply chains are not new to the academic field. We encourage young researchers to move away from already mined areas to more challenging subjects. Another example is the socio-technical approach which needs various research fields such as economics, business, policy, and life-cycle assessment because stakeholders include governments, people and enterprises. We would like to express our sincere appreciation to the authors for their submissions and to the reviewers for their invaluable efforts. Without these, this special issue could not have been published. This special issue on machine tool evaluation should prove especially interesting to researchers and engineers engaged in the enhancement of accuracy, efficiency, and versatility in machine tool systems, including the important disciplines of tooling and cutting tools. The topics that are covered in this special issue include – but are not limited to – the metrology of machine tools, the identification of kinematic errors through machine tool geometry, the evaluation of thermal deformation, the dynamic analysis of machine tools, the evaluation of spindle stiffness, and cutting-edge monitoring technology. All of these provide advanced knowledge concerning that state-of-the-art of technology required to ensure that machine tool design continues to remain innovative. I would like to close here by expressing my sincere appreciation to all those who have worked to make this issue interesting and informative. My special thanks go to the authors of the featured articles and to the reviewers whose invaluable efforts have made this publication possible.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2260
Author(s):  
Chunhui Li ◽  
Zhiqiang Song ◽  
Xianghua Huang ◽  
Hui Zhao ◽  
Xuchu Jiang ◽  
...  

Dynamic parameters are the intermediate information of the entirety of machine dynamics. The differences between components have not been combined with the structural vibration in the cutting process, so it is difficult to directly represent the dynamic characteristics of the whole machine related to spatial position. This paper presents a method to identify sensitive parts according to the dynamic stiffness-sensitivity algorithm, which represents the dynamic characteristics of the whole machine tool. In this study, two experiments were carried out, the simulation verification experiment (dynamic experiment with variable stiffness) and modal analysis experiment (vibration test of five-axis gantry milling machine). The key modes of sensitive parts obtained by this method can represent the position-related dynamic characteristics of the whole machine. The characteristic obtained is that the inherent properties of machine-tool structure are independent of excitation. The method proposed in this paper can accurately represent the dynamic characteristics of the whole machine tool.


2019 ◽  
Vol 13 (5) ◽  
pp. 573-573 ◽  
Author(s):  
Yohichi Nakao ◽  
Hayato Yoshioka

With the 2011 launch of Industrie 4.0, a German project aiming to promote the computerization of manufacturing, the integration of physical or actual manufacturing systems with cyber-physical systems (CPS) using various technologies, such as the Internet of things (IoT), industrial Internet of things (IIOT), and artificial intelligence, is considered to be more important than ever before. One of the goals of the Industrie 4.0 is to realize smart factories or smart manufacturing using advanced digital technologies. However, the core component in the manufacturing systems is still machine tools. This special issue, composed of eleven excellent research papers, focuses on the latest research advances in machine tools and manufacturing processes. It covers various topics, including machine tool control, tool path generation for multi-axis machining, and machine tool components. Furthermore, this special issue includes innovative machining technologies, including not only cutting and grinding processes but also the EDM process and burnishing process connected effectively with force control techniques. All the research contributions were presented at IMEC2018, a joint event with JIMTOF2018, held in Tokyo, Japan in 2018. The editors would like to sincerely thank the authors for their dedication and for their well written and illustrated manuscripts. We are also profoundly grateful for the efforts of all the reviewers who ensured their quality. Finally, we sincerely hope that studies on machine tools and related manufacturing technologies will further contribute to the development of our global society.


2014 ◽  
Vol 8 (6) ◽  
pp. 791-791
Author(s):  
Tojiro Aoyama

Control and process monitoring are key technologies supporting high machining accuracy and efficiency. This special issue features six papers taking novel approaches to controlling machine and cutting tools and monitoring the machining process. The motion control of machine tools and cutting tools are introduced. A new challenge for monitoring the machining process by referring to NC control servo signals implements a practical proposal. The precise identification of friction at driving elements of machine tool components is an important factor in improving machine tool control motion accuracy. I would like to express my sincere appreciation to the authors and reviewers whose invaluable efforts have helped make the publication of this manuscript possible.


Author(s):  
T Kobayashi ◽  
M Burdekin

Not only dynamic characteristics of machine tool structures but also those of workpiece fixtures are important in machine tools as they directly influence the dynamic rigidity at a cutting point. In this paper, the effects of damping characteristics of slideways on the dynamic characteristics of workpiece fixtures mounted on machine tool tables have been clarified both theoretically and experimentally. Furthermore, a design criterion of workpiece fixtures has been suggested.


Sign in / Sign up

Export Citation Format

Share Document