Proposal of Contour Line Model for High-Speed End Milling Simulation

2020 ◽  
Vol 14 (1) ◽  
pp. 38-45 ◽  
Author(s):  
Isamu Nishida ◽  
◽  
Keiichi Shirase

A contour line model for end milling simulation, which realizes high-speed arithmetic processing by reducing memory usage, is proposed. In this model, a 3-dimensional shape can be expressed by superimposing the contour lines of the cross-sections obtained by dividing the workpiece along any axial direction. Therefore, the memory usage is reduced compared to a Z-map model or a voxel model as the interior information of the object can be eliminated. The contour line model can also be applied to complicated shapes having overhangs. Furthermore, cutting volume can be calculated from the interference area enclosed by two contour lines of the workpiece and the tool cross-sections. The workpiece shape can be changed by eliminating the interference area. In the contour line model, cutting force can also be predicted with an instantaneous rigid force model using the uncut chip thickness for each cutting edge from the positional relationship between the interference area and the cutting edge. To validate the proposed model, cutting experiments were conducted, which confirmed that the predicted machining shape had good agreement with the actual machined shape. Furthermore, it was confirmed that the cutting force can be predicted accurately.

Author(s):  
Mohammad Malekan ◽  
Camilla D. Bloch-Jensen ◽  
Maryam Alizadeh Zolbin ◽  
Klaus B. Ørskov ◽  
Henrik M. Jensen ◽  
...  

2018 ◽  
Author(s):  
Isamu Nishida ◽  
Takaya Nakamura ◽  
Ryuta Sato ◽  
Keiichi Shirase

A new method, which accurately predicts cutting force in ball end milling considering cutting edge around center web, has been proposed. The new method accurately calculates the uncut chip thickness, which is required to estimate the cutting force by the instantaneous rigid force model. In the instantaneous rigid force model, the uncut chip thickness is generally calculated on the cutting edge in each minute disk element piled up along the tool axis. However, the orientation of tool cutting edge of ball end mill is different from that of square end mill. Therefore, for the ball end mill, the uncut chip thickness cannot be calculated accurately in the minute disk element, especially around the center web. Then, this study proposes a method to calculate the uncut chip thickness along the vector connecting the center of the ball and the cutting edge. The proposed method can reduce the estimation error of the uncut chip thickness especially around the center web compared with the previous method. Our study also realizes to calculate the uncut chip thickness discretely by using voxel model and detecting the removal voxels in each minute tool rotation angle, in which the relative relationship between a cutting edge and a workpiece, which changes dynamically during tool rotation. A cutting experiment with the ball end mill was conducted in order to validate the proposed method. The results showed that the error between the measured and predicted cutting forces can be reduced by the proposed method compared with the previous method.


2014 ◽  
Vol 494-495 ◽  
pp. 602-605
Author(s):  
Zeng Hui An ◽  
Xiu Li Fu ◽  
Ya Nan Pan ◽  
Ai Jun Tang

Cutting forces is one of the important physical phenomena in metal cutting process. It directly affects the surface quality of machining, tool life and cutting stability. The orthogonal experiments of cutting forces and influence factors with indexable and solid end mill were accomplished and the predictive model of milling force was established during high speed end milling 7050-T7451 aluminum alloy. The paper makes research mainly on the influence which the cutting speed, cutting depth and feed have on the cutting force. The experimental results of single factor showed that the cutting forces increase earlier and drop later with the increase of cutting speed, and the cutting speed of inflexion for 7050-T7451 is 1100m/min. As axial cutting depth, radial cutting depth and feed rate increase, the cutting force grows in different degree. The cutting force is particularly sensitive to axial cutting depth and slightly to the radial cutting depth.


Geophysics ◽  
1972 ◽  
Vol 37 (4) ◽  
pp. 669-674 ◽  
Author(s):  
R. C. Hessing ◽  
Henry K. Lee ◽  
Alan Pierce ◽  
Eldon N. Powers

A method is described for using a digital computer to construct contour maps automatically. Contour lines produced by this method have correct relations to given discrete data points regardless of the spatial distribution of these points. The computer‐generated maps are comparable to those drawn manually. The region to be contoured is divided into quadrilaterals whose vertices include the data points. After supplying values at each of the remaining vertices by using a surface‐fitting technique, bicubic functions are constructed on each quadrilateral to form a smooth surface through the data points. Points on a contour line are obtained from these surfaces by solving the resulting cubic equations. The bicubic functions may be used for other calculations consistent with the contour maps, such as interpolation of equally spaced values, calculation of cross‐sections, and volume calculations.


2019 ◽  
Vol 13 (1) ◽  
pp. 133-140 ◽  
Author(s):  
Shinichi Yoshimitsu ◽  
◽  
Daiki Iwashita ◽  
Kenji Shimana ◽  
Yuya Kobaru ◽  
...  

To date, various in-process monitoring and measuring techniques for milling have been proposed; these are based on factors such as spindle power, cutting force, and vibration. However, the spindle power and cutting force in small-diameter milling processes are too small, thereby rendering these methods ineffective. This study aims to develop an in-process monitoring system of the cutting state, and thus, prevent tool breakage in milling when using a small-diameter tool. Our previous study showed that this monitoring technique is based on the analysis of the tool projection image by a CCD camera. It enables a precise measurement of tool deflection during high-speed milling. In this study, we apply this system to the measurement of tool deflection in end milling under different cutting conditions, including tool type, machining shape, workpiece, and feed rate. Moreover, we examine the relationship between tool deflection and cutting conditions. The results clarify that this system enables in-process monitoring of tool deflection. The measured tool deflection with this system is influenced by the cutting condition. In addition, the tool deflection shows a periodical change in one turn, which seems to be related to the number of tool edges.


2014 ◽  
Vol 29 (3) ◽  
pp. 350-356 ◽  
Author(s):  
H. Safari ◽  
S. Sharif ◽  
S. Izman ◽  
H. Jafari ◽  
D. Kurniawan

2019 ◽  
Vol 13 (5) ◽  
pp. 639-647
Author(s):  
Keiji Ogawa ◽  
Takumi Imada ◽  
Haruki Kino ◽  
Heisaburo Nakagawa ◽  
Hitomi Kojima ◽  
...  

The demand for micro-end-milling for products in fields such as the medical, optical, and electronics industry is increasing. However, when machining with a small diameter end-mill (micro-end-mill) with diameters such as 0.5 mm, the rigidity of the tool itself is low; hence, the cutting conditions must be set to low values to achieve stable machining. Therefore, we examined various cutting phenomena that occur during actual machining processes to achieve high machining accuracy, high finished-surface quality, and long tool life. Some studies on micromachining achieved high accuracy, high-grade machining by considering the cutting phenomena. In previous papers, we dealt with the side-cutting phenomena in micro-end-milling of hardened die steels using a high-speed air-turbine spindle with rolling bearing. Cutting experiments were carried out by measuring the cutting force and flank wear of a cutting tool to investigate the difference in cutting phenomena caused by cutting direction in high-speed micro-end-milling. Observation of the machined surface and measurement of the profile of the cutting edge and machined surface were demonstrated. It was revealed that machining quality in high-speed up-cut milling was better than that in down-cut milling. Shoulder cutting, in which both peripheral and bottom cutting edges act simultaneously on the workpiece, was also investigated. A novel small diameter end-mill with left-hand helical tool with right-hand cut was developed to avoid damaging the cutting edge in the initial cutting stage. In the present study, high-quality shoulder cutting of a vertical wall using the new tool was proposed and demonstrated.


Sign in / Sign up

Export Citation Format

Share Document