scholarly journals Special Issue on Advances in Abrasive Technology

2021 ◽  
Vol 15 (1) ◽  
pp. 3-3
Author(s):  
Kazuhito Ohashi ◽  
Hirofumi Suzuki ◽  
Takazo Yamada

As abrasive technologies are currently indispensable for production processes in the automotive, aerospace, optics, telecommunications, and healthcare industries, among others, it is essential that the application of abrasive processing to production be optimized and improved. To those ends, it is necessary to understand how to approach the task, as there are many processing factors to consider. However, priority is given to understanding the abrasive processing mechanism that determine finishing results, as well as the relationship between the processing factors and individual conditions. Measurement, analysis, and evaluation technologies are also important. Furthermore, the development of new abrasive tools or machining fluids and the active use of physicochemical phenomena are key to the development of advanced abrasive technologies. Cutting-edge studies focusing on advanced abrasive technologies were collected for this special issue, which includes 12 papers covering the following topics: - Quantitative evaluation of surface profile of grinding wheel - Elucidation of grinding mechanism, based on grinding force - Novel grinding wheel - High-efficiency and high-accuracy grinding of difficult-to-cut materials - Polishing technology using magnetic fluid slurry - Application of ultrasonic waves or ultra-fine bubbles to coolants, and their effects on them - Planarization technology for single-crystal silicon carbide This issue is expected to help its readers to understand recent developments in abrasive technologies and to lead to further research. We deeply appreciate the contributions of all authors and thank the reviewers for their incisive efforts.

2020 ◽  
Vol 90 (10) ◽  
pp. 1758
Author(s):  
Н.А. Чучвага ◽  
Н.М. Кислякова ◽  
Н.С. Токмолдин ◽  
Б.А. Ракыметов ◽  
А.С. Серикканов

The wet chemical treatment of monocrystalline silicon wafers, said method comprising texturing, represents one of the fundamental steps of manufacturing techniques of high-efficiency solar cells. As part of this work, methods for texturing single-crystal silicon wafers for solar cells were studied.As a result of studies, the optimal parameters of texturing technology for the studied samples were determined. The main type of etchant for texturing processes, which is a solution of KOH with isopropanol, is also determined.


2015 ◽  
Vol 809-810 ◽  
pp. 21-26 ◽  
Author(s):  
Qiu Yun Huang ◽  
Lei Guo ◽  
Ioan Marinescu

Ultraviolet-cured resin bond, abrasive tools have been studied and have proven to have substantial advantages over conventional abrasive tools, not only in low energy cost and high efficiency when manufacturing the tool itself, but also in better performance when machining some materials [1,2]. However, very little research has been done to study the mechanism of UV cured abrasive tools. Nevertheless, many researchers have investigated the performances of such tools compared with some conventional tools. A mechanism of UV cured, resin bond, diamond wheel was proposed as the hybrid of grinding and lapping, which is called as grind/lap (G/L) process [3]. In the paper, the proposed mechanism was verified by comparing the experimental results of three processes. Three wheels were used to simulate grinding, lapping and grind/lapping operation separately under the same experimental setting. The results showed that the RA obtained by G/L wheel decreased to a value between those gained by grinding and lapping operations after 10 minutes and it became the lowest of the three as time increases. The RA and MRR of three processes indicated that at the beginning of operation, the abrasives in G/L wheel are fixed by the cured resin, and as machining time increases, the small grains get released from the wheel and act as loose abrasives. Therefore, the mechanism of the UV cured resin bond diamond wheel is verified as the dominant grinding at the beginning and lapping at the end, which was also illustrated by the surface profile of machined part.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 295
Author(s):  
Tianzhao Dai ◽  
Qiaojun Cao ◽  
Lifeng Yang ◽  
Mahmoud Aldamasy ◽  
Meng Li ◽  
...  

Perovskite solar cells (PSCs) have received a great deal of attention in the science and technology field due to their outstanding power conversion efficiency (PCE), which increased rapidly from 3.9% to 25.5% in less than a decade, comparable to single crystal silicon solar cells. In the past ten years, much progress has been made, e.g. impressive ideas and advanced technologies have been proposed to enlarge PSC efficiency and stability. However, this outstanding progress has always been referred to as small-area (<0.1 cm2) PSCs. Little attention has been paid to the preparation processes and their micro-mechanisms for large-area (>1 cm2) PSCs. Meanwhile, scaling up is an inevitable way for large-scale application of PSCs. Therefore, we firstly summarize the current achievements for high efficiency and stability large-area perovskite solar cells, including precursor composition, deposition, growth control, interface engineering, packaging technology, etc. Then we include a brief discussion and outlook for the future development of large-area PSCs in commercialization.


2007 ◽  
Vol 2007 ◽  
pp. 1-9 ◽  
Author(s):  
Evan Franklin ◽  
Vernie Everett ◽  
Andrew Blakers ◽  
Klaus Weber

Sliver cells are thin, single-crystal silicon solar cells fabricated using standard fabrication technology. Sliver modules, composed of several thousand individual Sliver cells, can be efficient, low-cost, bifacial, transparent, flexible, shadow tolerant, and lightweight. Compared with current PV technology, mature Sliver technology will need 10% of the pure silicon and fewer than 5% of the wafer starts per MW of factory output. This paper deals with two distinct challenges related to Sliver cell and Sliver module production: providing a mature and robust Sliver cell fabrication method which produces a high yield of highly efficient Sliver cells, and which is suitable for transfer to industry; and, handling, electrically interconnecting, and encapsulating billions of sliver cells at low cost. Sliver cells with efficiencies of 20% have been fabricated at ANU using a reliable, optimised processing sequence, while low-cost encapsulation methods have been demonstrated using a submodule technique.


2019 ◽  
Vol 48 (7) ◽  
pp. 2158-2181 ◽  
Author(s):  
Zhibin Luo ◽  
Tuo Wang ◽  
Jinlong Gong

This review describes recent developments of single-crystal silicon (Si) as the photoelectrode material for solar water splitting, including the promising strategies to obtain highly efficient and stable single-crystal Si-based photoelectrodes for hydrogen evolution and water oxidation, as well as the future development of spontaneous solar water splitting with single-crystal Si-based tandem cells.


Sign in / Sign up

Export Citation Format

Share Document