scholarly journals Special Issue on Recent High Efficiency and Heavy Grinding. High Efficiency Grinding Wheel for Hard and Brittle Material.

1992 ◽  
Vol 58 (4) ◽  
pp. 591-593
Author(s):  
Noritsugu KAWABATA ◽  
Keizo TAKEUCHI
2021 ◽  
Vol 15 (1) ◽  
pp. 3-3
Author(s):  
Kazuhito Ohashi ◽  
Hirofumi Suzuki ◽  
Takazo Yamada

As abrasive technologies are currently indispensable for production processes in the automotive, aerospace, optics, telecommunications, and healthcare industries, among others, it is essential that the application of abrasive processing to production be optimized and improved. To those ends, it is necessary to understand how to approach the task, as there are many processing factors to consider. However, priority is given to understanding the abrasive processing mechanism that determine finishing results, as well as the relationship between the processing factors and individual conditions. Measurement, analysis, and evaluation technologies are also important. Furthermore, the development of new abrasive tools or machining fluids and the active use of physicochemical phenomena are key to the development of advanced abrasive technologies. Cutting-edge studies focusing on advanced abrasive technologies were collected for this special issue, which includes 12 papers covering the following topics: - Quantitative evaluation of surface profile of grinding wheel - Elucidation of grinding mechanism, based on grinding force - Novel grinding wheel - High-efficiency and high-accuracy grinding of difficult-to-cut materials - Polishing technology using magnetic fluid slurry - Application of ultrasonic waves or ultra-fine bubbles to coolants, and their effects on them - Planarization technology for single-crystal silicon carbide This issue is expected to help its readers to understand recent developments in abrasive technologies and to lead to further research. We deeply appreciate the contributions of all authors and thank the reviewers for their incisive efforts.


2005 ◽  
Vol 291-292 ◽  
pp. 67-72 ◽  
Author(s):  
M. Ota ◽  
T. Nakayama ◽  
K. Takashima ◽  
H. Watanabe

There are strong demands for a machining process capable of reducing the surface roughness of sliding parts, such as auto parts and other components, with high efficiency. In this work, we attempted to grind hardened steel to a mirror-like surface finish with high efficiency using an ultra-high speed grinding process. In the present study, we examined the effects of the work speed and the grinding wheel grain size in an effort to optimize the grinding conditions for accomplishing mirror-like surface grinding with high efficiency. The results showed that increasing the work speed, while keeping grinding efficiency constant, was effective in reducing the work affected layer and that the grinding force of a #200 CBN wheel was lower than that of a #80 CBN wheel. Based on these results, a high-efficiency grinding step with optimized grinding conditions was selected that achieved excellent ground surface quality with a mirror-like finish.


2008 ◽  
Vol 74 (5) ◽  
pp. 491-497
Author(s):  
Nobuhiko TAKAHASHI ◽  
Hayato YOSHIOKA ◽  
Hidenori SHINNO

Engineering ◽  
2010 ◽  
Vol 02 (03) ◽  
pp. 184-189 ◽  
Author(s):  
Yali Hou ◽  
Changhe Li ◽  
Yan Zhou

2015 ◽  
Vol 809-810 ◽  
pp. 21-26 ◽  
Author(s):  
Qiu Yun Huang ◽  
Lei Guo ◽  
Ioan Marinescu

Ultraviolet-cured resin bond, abrasive tools have been studied and have proven to have substantial advantages over conventional abrasive tools, not only in low energy cost and high efficiency when manufacturing the tool itself, but also in better performance when machining some materials [1,2]. However, very little research has been done to study the mechanism of UV cured abrasive tools. Nevertheless, many researchers have investigated the performances of such tools compared with some conventional tools. A mechanism of UV cured, resin bond, diamond wheel was proposed as the hybrid of grinding and lapping, which is called as grind/lap (G/L) process [3]. In the paper, the proposed mechanism was verified by comparing the experimental results of three processes. Three wheels were used to simulate grinding, lapping and grind/lapping operation separately under the same experimental setting. The results showed that the RA obtained by G/L wheel decreased to a value between those gained by grinding and lapping operations after 10 minutes and it became the lowest of the three as time increases. The RA and MRR of three processes indicated that at the beginning of operation, the abrasives in G/L wheel are fixed by the cured resin, and as machining time increases, the small grains get released from the wheel and act as loose abrasives. Therefore, the mechanism of the UV cured resin bond diamond wheel is verified as the dominant grinding at the beginning and lapping at the end, which was also illustrated by the surface profile of machined part.


2011 ◽  
Vol 325 ◽  
pp. 276-281 ◽  
Author(s):  
Manabu Iwai ◽  
Shinichi Ninomiya ◽  
Kiyoshi Suzuki

Polycrystalline Composite Diamond (PCD) is excellent in chipping resistance despite its very high hardness. However, it is not easy to EDM or grind PCD. To realize high efficiency and high quality processing of PCD simply and at low cost, the authors devised new PCD (EC-PCD) by using electrically conductive diamond particles and applied a complex electrodischarge grinding method. In this study, investigation is made on effective grinding condition to realize high efficiency, low and stable grinding force and low wheel wear in complex electrodischarge grinding. As a result, superior grinding property was obtained when the grinding wheel was set at minus polarity, and set peak current of iP = 4 and 6 A was applied. Furthermore it also became clear that additional conventional grinding process followed after complex electrodischarge grinding improved the surface condition.


Sign in / Sign up

Export Citation Format

Share Document