An Approach in Designing Hierarchy of Fuzzy Behaviors for Mobile Robot Navigation

Author(s):  
Long Thanh Ngo ◽  
◽  
Long The Pham ◽  
Phuong Hoang Nguyen ◽  
Kaoru Hirota ◽  
...  

We propose an approach to the design hierarchical behaviors for mobile robot navigation in which robot perceives information about the environment from sensor then computes fuzzy output for individual behavior. Each behavior involves a fuzzy controller with the same output. The behavior hierarchy combines commands from fuzzy behavior output and defuzzifies it to archive crisp values for controlling the direction in which robot moves. Simulation results and statistics demonstrate the feasibility of our proposal.

Author(s):  
Maryam Refaee ◽  
Mohammad Hossein Kazemi ◽  
MohammadAli Nekoui ◽  
S. Amir Ghoreishi

2003 ◽  
Vol 52 (4) ◽  
pp. 1335-1340 ◽  
Author(s):  
P. Rusu ◽  
E.M. Petriu ◽  
T.E. Whalen ◽  
A. Cornell ◽  
H.J.W. Spoelder

2017 ◽  
Vol 8 (2) ◽  
pp. 854-859
Author(s):  
M. Saiful Azimi ◽  
Z. A. Shukri ◽  
M. Zaharuddin

The difficulties of transporting heavy mobile robots limit robotic experiments in agriculture. Virtual reality however, offers an alternative to conduct experiments in agriculture. This paper presents an application of virtual reality in a robot navigational experiment using SolidWorks and simulated into MATLAB. Trajectories were initiated using Probabilistic Roadmap and compared based on travel time, distance and tracking error, and the efficiency was calculated. The simulation results showed that the proposed method was able to conduct the navigational experiment inside the virtual environment. U-turn trajectory was chosen as the best trajectory for crop inspection with 82.7% efficiency.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 466
Author(s):  
Cheng-Hung Chen ◽  
Cheng-Jian Lin ◽  
Shiou-Yun Jeng ◽  
Hsueh-Yi Lin ◽  
Cheng-Yi Yu

This study proposes a knowledge-based neural fuzzy controller (KNFC) for mobile robot navigation control. An effective knowledge-based cultural multi-strategy differential evolution (KCMDE) is used for adjusting the parameters of KNFC. The KNFC is applied in PIONEER 3-DX mobile robots to achieve automatic navigation and obstacle avoidance capabilities. A novel escape approach is proposed to enable robots to autonomously avoid special environments. The angle between the obstacle and robot is used and two thresholds are set to determine whether the robot entries into the special landmarks and to modify the robot behavior for avoiding dead ends. The experimental results show that the proposed KNFC based on the KCMDE algorithm has improved the learning ability and system performance by 15.59% and 79.01%, respectively, compared with the various differential evolution (DE) methods. Finally, the automatic navigation and obstacle avoidance capabilities of robots in unknown environments were verified for achieving the objective of mobile robot control.


Sign in / Sign up

Export Citation Format

Share Document