On Kernel Fuzzy c-Means for Data with Tolerance Using Explicit Mapping for Kernel Data Analysis

Author(s):  
Yuchi Kanzawa ◽  
◽  
Yasunori Endo ◽  
Sadaaki Miyamoto ◽  

While explicit mapping is generally unknown for kernel data analysis, its inner product should be known. Although we proposed a kernel fuzzy c-means algorithm for data with tolerance, cluster centers and tolerance in higher dimensional space have not been seen. Contrary to this common assumption, explicit mapping has been introduced and the situation of kernel fuzzy c-means in higher dimensional space has been described via kernel principal component analysis using explicit mapping. In this paper, cluster centers and the tolerance of kernel fuzzy c-means for data with tolerance are described via kernel principal component analysis using explicit mapping.


2020 ◽  
Author(s):  
Alberto García-González ◽  
Antonio Huerta ◽  
Sergio Zlotnik ◽  
Pedro Díez

Abstract Methodologies for multidimensionality reduction aim at discovering low-dimensional manifolds where data ranges. Principal Component Analysis (PCA) is very effective if data have linear structure. But fails in identifying a possible dimensionality reduction if data belong to a nonlinear low-dimensional manifold. For nonlinear dimensionality reduction, kernel Principal Component Analysis (kPCA) is appreciated because of its simplicity and ease implementation. The paper provides a concise review of PCA and kPCA main ideas, trying to collect in a single document aspects that are often dispersed. Moreover, a strategy to map back the reduced dimension into the original high dimensional space is also devised, based on the minimization of a discrepancy functional.



2021 ◽  
Vol 11 (14) ◽  
pp. 6370
Author(s):  
Elena Quatrini ◽  
Francesco Costantino ◽  
David Mba ◽  
Xiaochuan Li ◽  
Tat-Hean Gan

The water purification process is becoming increasingly important to ensure the continuity and quality of subsequent production processes, and it is particularly relevant in pharmaceutical contexts. However, in this context, the difficulties arising during the monitoring process are manifold. On the one hand, the monitoring process reveals various discontinuities due to different characteristics of the input water. On the other hand, the monitoring process is discontinuous and random itself, thus not guaranteeing continuity of the parameters and hindering a straightforward analysis. Consequently, further research on water purification processes is paramount to identify the most suitable techniques able to guarantee good performance. Against this background, this paper proposes an application of kernel principal component analysis for fault detection in a process with the above-mentioned characteristics. Based on the temporal variability of the process, the paper suggests the use of past and future matrices as input for fault detection as an alternative to the original dataset. In this manner, the temporal correlation between process parameters and machine health is accounted for. The proposed approach confirms the possibility of obtaining very good monitoring results in the analyzed context.



2009 ◽  
Vol 147-149 ◽  
pp. 588-593 ◽  
Author(s):  
Marcin Derlatka ◽  
Jolanta Pauk

In the paper the procedure of processing biomechanical data has been proposed. It consists of selecting proper noiseless data, preprocessing data by means of model’s identification and Kernel Principal Component Analysis and next classification using decision tree. The obtained results of classification into groups (normal and two selected pathology of gait: Spina Bifida and Cerebral Palsy) were very good.



Sign in / Sign up

Export Citation Format

Share Document