A Comparative Sensor Based Multi-Classes Neural Network Classifications for Human Activity Recognition

Author(s):  
Ramtin Aminpour ◽  
◽  
Elmer Dadios

Human activity recognition with the smartphone could be important for many applications, especially since most of the people use this device in their daily life. A smartphone is a portable gadget with internal sensors and enough hardware power to accommodate this problem. In this paper, three neural network algorithms were compared to detect six major activities. The data are collected by a smartphone in real life and simulated on the remote server. The results show that MLP and GMDH neural network have better accuracy and performance compared with the LVQ neural network algorithm.

2021 ◽  
Vol 11 (24) ◽  
pp. 12099
Author(s):  
Ashwani Prasad ◽  
Amit Kumar Tyagi ◽  
Maha M. Althobaiti ◽  
Ahmed Almulihi ◽  
Romany F. Mansour ◽  
...  

Human Activity Recognition (HAR) has become an active field of research in the computer vision community. Recognizing the basic activities of human beings with the help of computers and mobile sensors can be beneficial for numerous real-life applications. The main objective of this paper is to recognize six basic human activities, viz., jogging, sitting, standing, walking and whether a person is going upstairs or downstairs. This paper focuses on predicting the activities using a deep learning technique called Convolutional Neural Network (CNN) and the accelerometer present in smartphones. Furthermore, the methodology proposed in this paper focuses on grouping the data in the form of nodes and dividing the nodes into three major layers of the CNN after which the outcome is predicted in the output layer. This work also supports the evaluation of testing and training of the two-dimensional CNN model. Finally, it was observed that the model was able to give a good prediction of the activities with an average accuracy of 89.67%. Considering that the dataset used in this research work was built with the aid of smartphones, coming up with an efficient model for such datasets and some futuristic ideas pose open challenges in the research community.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1715
Author(s):  
Michele Alessandrini ◽  
Giorgio Biagetti ◽  
Paolo Crippa ◽  
Laura Falaschetti ◽  
Claudio Turchetti

Photoplethysmography (PPG) is a common and practical technique to detect human activity and other physiological parameters and is commonly implemented in wearable devices. However, the PPG signal is often severely corrupted by motion artifacts. The aim of this paper is to address the human activity recognition (HAR) task directly on the device, implementing a recurrent neural network (RNN) in a low cost, low power microcontroller, ensuring the required performance in terms of accuracy and low complexity. To reach this goal, (i) we first develop an RNN, which integrates PPG and tri-axial accelerometer data, where these data can be used to compensate motion artifacts in PPG in order to accurately detect human activity; (ii) then, we port the RNN to an embedded device, Cloud-JAM L4, based on an STM32 microcontroller, optimizing it to maintain an accuracy of over 95% while requiring modest computational power and memory resources. The experimental results show that such a system can be effectively implemented on a constrained-resource system, allowing the design of a fully autonomous wearable embedded system for human activity recognition and logging.


Author(s):  
Muhammad Muaaz ◽  
Ali Chelli ◽  
Martin Wulf Gerdes ◽  
Matthias Pätzold

AbstractA human activity recognition (HAR) system acts as the backbone of many human-centric applications, such as active assisted living and in-home monitoring for elderly and physically impaired people. Although existing Wi-Fi-based human activity recognition methods report good results, their performance is affected by the changes in the ambient environment. In this work, we present Wi-Sense—a human activity recognition system that uses a convolutional neural network (CNN) to recognize human activities based on the environment-independent fingerprints extracted from the Wi-Fi channel state information (CSI). First, Wi-Sense captures the CSI by using a standard Wi-Fi network interface card. Wi-Sense applies the CSI ratio method to reduce the noise and the impact of the phase offset. In addition, it applies the principal component analysis to remove redundant information. This step not only reduces the data dimension but also removes the environmental impact. Thereafter, we compute the processed data spectrogram which reveals environment-independent time-variant micro-Doppler fingerprints of the performed activity. We use these spectrogram images to train a CNN. We evaluate our approach by using a human activity data set collected from nine volunteers in an indoor environment. Our results show that Wi-Sense can recognize these activities with an overall accuracy of 97.78%. To stress on the applicability of the proposed Wi-Sense system, we provide an overview of the standards involved in the health information systems and systematically describe how Wi-Sense HAR system can be integrated into the eHealth infrastructure.


2021 ◽  
pp. 116287
Author(s):  
Yair A. Andrade-Ambriz ◽  
Sergio Ledesma ◽  
Mario-Alberto Ibarra-Manzano ◽  
Marvella I. Oros-Flores ◽  
Dora-Luz Almanza-Ojeda

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7853
Author(s):  
Aleksej Logacjov ◽  
Kerstin Bach ◽  
Atle Kongsvold ◽  
Hilde Bremseth Bårdstu ◽  
Paul Jarle Mork

Existing accelerometer-based human activity recognition (HAR) benchmark datasets that were recorded during free living suffer from non-fixed sensor placement, the usage of only one sensor, and unreliable annotations. We make two contributions in this work. First, we present the publicly available Human Activity Recognition Trondheim dataset (HARTH). Twenty-two participants were recorded for 90 to 120 min during their regular working hours using two three-axial accelerometers, attached to the thigh and lower back, and a chest-mounted camera. Experts annotated the data independently using the camera’s video signal and achieved high inter-rater agreement (Fleiss’ Kappa =0.96). They labeled twelve activities. The second contribution of this paper is the training of seven different baseline machine learning models for HAR on our dataset. We used a support vector machine, k-nearest neighbor, random forest, extreme gradient boost, convolutional neural network, bidirectional long short-term memory, and convolutional neural network with multi-resolution blocks. The support vector machine achieved the best results with an F1-score of 0.81 (standard deviation: ±0.18), recall of 0.85±0.13, and precision of 0.79±0.22 in a leave-one-subject-out cross-validation. Our highly professional recordings and annotations provide a promising benchmark dataset for researchers to develop innovative machine learning approaches for precise HAR in free living.


Sign in / Sign up

Export Citation Format

Share Document