scholarly journals Effects of Trade Environment in Decentralized Inter-Organizational Business Structures Through Agent Simulation

Author(s):  
Taisei Mukai ◽  
◽  
Takao Terano

The objective of this research is to investigate the features of an inter-firm trade structure model. We have developed this model through agent-based simulation. In order to adapt to rapid changes in the business market, each firm must deal with changes in requirements and the required volume changes. Thus, the model has two combined functions. The first function allows a firm to freely trade with other firms as a decentralized trade structure. The second function allows a firm to mediate other firms as a centralized trade structure. The combined model has worked well in various test cases so far. However, other trading environments have not been fully investigated. Therefore, this study focuses on the detailed environmental conditions: (1) the number of similar firms and (2) the number of procurement items, and deals with intensive experiments and detailed analysis of the two functions of the model in the agent-based simulations. The simulation results suggest that the two functions in the combined model work particularly well under the conditions of a trading environment in which there exist both (1) a large number of similar business firms and (2) firms with a certain number of procurement items, compared to the decentralized trade structure, where each firm’s size is neither particularly large nor small.

Author(s):  
H. Faroqi ◽  
M.-S. Mesgari

During emergencies, emotions greatly affect human behaviour. For more realistic multi-agent systems in simulations of emergency evacuations, it is important to incorporate emotions and their effects on the agents. In few words, emotional contagion is a process in which a person or group influences the emotions or behavior of another person or group through the conscious or unconscious induction of emotion states and behavioral attitudes. In this study, we simulate an emergency situation in an open square area with three exits considering Adults and Children agents with different behavior. Also, Security agents are considered in order to guide Adults and Children for finding the exits and be calm. Six levels of emotion levels are considered for each agent in different scenarios and situations. The agent-based simulated model initialize with the random scattering of agent populations and then when an alarm occurs, each agent react to the situation based on its and neighbors current circumstances. The main goal of each agent is firstly to find the exit, and then help other agents to find their ways. Numbers of exited agents along with their emotion levels and damaged agents are compared in different scenarios with different initialization in order to evaluate the achieved results of the simulated model. NetLogo 5.2 is used as the multi-agent simulation framework with R language as the developing language.


Author(s):  
Takeshi Takenaka ◽  
Kousuke Fujita ◽  
Nariaki Nishino ◽  
Tsukasa Ishigaki ◽  
Yoichi Motomura

Science and technology are expected to support actual service provision and to create new services to promote service industries’ productivity. However, those problems might not be solved solely in a certain research area. This paper describes that it is necessary to establish transdisciplinary approaches to service design in consideration of consumers’ values and decision making. Recent research trends of services are overviewed. Then a research framework is proposed to integrate computer sciences, human sciences, and economic sciences. Three study examples of services are then presented. The first study is a multi-agent simulation of a cellular telephone market based on results of a psychological survey. The second presents a cognitive model constructed through integration of questionnaire data of a retail business and Bayesian network modeling. The third presents a pricing mechanism design for service facilities––movie theaters––using an economic experiment and agent-based simulation.


Author(s):  
John Wu ◽  
David Ben-Arieh ◽  
Zhenzhen Shi

This research proposes an agent-based simulation model combined with the strength of systemic dynamic mathematical model, providing a new modeling and simulation approach of the pathogenesis of AIR. AIR is the initial stage of a typical sepsis episode, often leading to severe sepsis or septic shocks. The process of AIR has been in the focal point affecting more than 750,000 patients annually in the United State alone. Based on the agent-based model presented herein, clinicians can predict the sepsis pathogenesis for patients using the prognostic indicators from the simulation results, planning the proper therapeutic interventions accordingly. Impressively, the modeling approach presented creates a friendly user-interface allowing physicians to visualize and capture the potential AIR progression patterns. Based on the computational studies, the simulated behavior of the agent–based model conforms to the mechanisms described by the system dynamics mathematical models established in previous research.


Author(s):  
Salma Azzouzi ◽  
Sara Hsaini ◽  
My El Hassan Charaf

Conformance testing may be seen as mean to execute an IUT (implementation under test) by carrying out test cases in order to observe whether the behavior of the IUT is conforming to its specifications. However, the development of distributed testing frameworks is more complex and the implementation of the parallel testing components (PTCs) should take into consideration the mechanisms and functions required to support interaction during PTC communication. In this article, the authors present another way to control the test execution of PTCs by introducing synchronization messages into the local test sequences. Then, they suggest an agent-based simulation to implement synchronized local test sequences and resolve the problem of control and synchronization.


Author(s):  
Takeshi Takenaka ◽  
Kousuke Fujita ◽  
Nariaki Nishino ◽  
Tsukasa Ishigaki ◽  
Yoichi Motomura

Science and technology are expected to support actual service provision and to create new services to promote service industries’ productivity. However, those problems might not be solved solely in a certain research area. This paper describes that it is necessary to establish transdisciplinary approaches to service design in consideration of consumers’ values and decision making. Recent research trends of services are overviewed. Then a research framework is proposed to integrate computer sciences, human sciences, and economic sciences. Three study examples of services are then presented. The first study is a multi-agent simulation of a cellular telephone market based on results of a psychological survey. The second presents a cognitive model constructed through integration of questionnaire data of a retail business and Bayesian network modeling. The third presents a pricing mechanism design for service facilities––movie theaters––using an economic experiment and agent-based simulation.


SIMULATION ◽  
2016 ◽  
Vol 93 (1) ◽  
pp. 69-84 ◽  
Author(s):  
Shailesh Tamrakar ◽  
Paul Richmond ◽  
Roshan M D’Souza

Agent-based models (ABMs) are increasingly being used to study population dynamics in complex systems, such as the human immune system. Previously, Folcik et al. (The basic immune simulator: an agent-based model to study the interactions between innate and adaptive immunity. Theor Biol Med Model 2007; 4: 39) developed a Basic Immune Simulator (BIS) and implemented it using the Recursive Porous Agent Simulation Toolkit (RePast) ABM simulation framework. However, frameworks such as RePast are designed to execute serially on central processing units and therefore cannot efficiently handle large model sizes. In this paper, we report on our implementation of the BIS using FLAME GPU, a parallel computing ABM simulator designed to execute on graphics processing units. To benchmark our implementation, we simulate the response of the immune system to a viral infection of generic tissue cells. We compared our results with those obtained from the original RePast implementation for statistical accuracy. We observe that our implementation has a 13× performance advantage over the original RePast implementation.


2002 ◽  
Vol 13 (04) ◽  
pp. 531-554 ◽  
Author(s):  
VINCENT NG ◽  
MOK KWAN HO

The rapid growth of Internet users attracts advertisers to post their advertisements in Internet. The probabilistic selection algorithm was not satisfactory; while other advertising agents are unable to guarantee the quality due to insufficient and unstable user information. This paper describes a new advertising agent based on user information. The users' interests are discovered by the Order Pattern Mining algorithm first, then the Gaussian curve transformation is applied to represent their profiles. For the advertisements, we use the keywords from different categories to construct the advertisement profiles as Gaussian curves also. This allows us to select advertisements based on the intersections of the different profiles according to users' preferences in an effective and efficient mechanism. A prototype of the Intelligent Advertising Agent has been developed with Java and Oracle. From our evaluations, we observed that about 70% of the test cases are successful in making predictions which generated the most favorable category that the users are interested.


Author(s):  
Z. Zheng ◽  
Z. Y. Chang ◽  
Y. F. Fei

Installation Planning is constrained by both natural and social conditions, especially for spatially sparse but functionally connected facilities. Simulation is important for proper deploy in space and configuration in function of facilities to make them a cohesive and supportive system to meet users’ operation needs. Based on requirement analysis, we propose a framework to combine GIS and Agent simulation to overcome the shortness in temporal analysis and task simulation of traditional GIS. In this framework, Agent based simulation runs as a service on the server, exposes basic simulation functions, such as scenario configuration, simulation control, and simulation data retrieval to installation planners. At the same time, the simulation service is able to utilize various kinds of geoprocessing services in Agents’ process logic to make sophisticated spatial inferences and analysis. This simulation-as-a-service framework has many potential benefits, such as easy-to-use, on-demand, shared understanding, and boosted performances. At the end, we present a preliminary implement of this concept using ArcGIS javascript api 4.0 and ArcGIS for server, showing how trip planning and driving can be carried out by agents.


2014 ◽  
Vol 6 (4) ◽  
pp. 72-91
Author(s):  
Timothy W. C. Johnson ◽  
John R. Rankin

Large-scale Agent-Based Modelling and Simulation (ABMS) is a field of research that is becoming increasingly popular as researchers work to construct simulations at a higher level of complexity and realism than previously done. These systems can not only be difficult and time consuming to implement, but can also be constrained in their scope due to issues arising from a shortage of available processing power. This work simultaneously presents solutions to these two problems by demonstrating a model for ABMS that allows a developer to design their own simulation, which is then automatically converted into code capable of running on a mainstream Graphical Processing Unit (GPU). By harnessing the extra processing power afforded by the GPU this paper creates simulations that are capable of running in real-time with more autonomous agents than allowed by systems using traditional x86 processors.


Sign in / Sign up

Export Citation Format

Share Document