A Proximity-Tactile Sensor to Detect Obstacles for a Cylindrical Arm

1990 ◽  
Vol 2 (3) ◽  
pp. 172-179
Author(s):  
Yoji Yamada ◽  
◽  
Nuio Tsuchida ◽  
Minoru Ueda

A new-type sensor has been developed which possesses the functions of proximity and tactile sensing. The sensor is attached to the cylindrical arm surface of a manipulator in order to carry out both obstacle detection and interference checking in real time for collision avoidance control. This paper first introduces the structure of the detector part of the sensor. The means by which it detects obstacles is then discussed: change of capacitance is used for proximity sensing, while change of resistance of a pressure sensitive conductive rubber sheet is used for tactile sensing. The changes on which the characteristics of the sensor is dependent are analyzed theoretically to show, with experimental values, that they are affected by the kinds and shapes of obstacles. Finally, the detection circuit of the sensor, which is composed mainly of an LC Hartley oscillator, and the resultant characteristics of the sensor, are shown. The sensor has characteristics of having a high credibility in detecting the existence of any near-by and adjacent obstacle and making a quick response to their contacts. Furthermore, the detector part is elastic but yet sturdy and simple.

2020 ◽  
Vol 17 (4) ◽  
pp. 172988142093232
Author(s):  
Bing Zhang ◽  
Bowen Wang ◽  
Yunkai Li ◽  
Shaowei Jin

Tactile information is valuable in determining properties of objects that are inaccessible from visual perception. A new type of tangential friction and normal contact force magnetostrictive tactile sensor was developed based on the inverse magnetostrictive effect, and the force output model has been established. It can measure the exerted force in the range of 0–4 N, and it has a good response to the dynamic force in cycles of 0.25–0.5 s. We present a tactile perception strategy that a manipulator with tactile sensors in its grippers manipulates an object to measure a set of tactile features. It shows that tactile sensing system can use these features and the extreme learning machine algorithm to recognize household objects—purely from tactile sensing—from a small training set. The complex matrixes show the recognition rate is up to 83%.


Author(s):  
Ziyu Zhang ◽  
Chunyan Wang ◽  
Wanzhong Zhao ◽  
Jian Feng

In order to solve the problems of longitudinal and lateral control coupling, low accuracy and poor real-time of existing control strategy in the process of active collision avoidance, a longitudinal and lateral collision avoidance control strategy of intelligent vehicle based on model predictive control is proposed in this paper. Firstly, the vehicle nonlinear coupling dynamics model is established. Secondly, considering the accuracy and real-time requirements of intelligent vehicle motion control in pedestrian crossing scene, and combining the advantages of centralized control and decentralized control, an integrated unidirectional decoupling compensation motion control strategy is proposed. The proposed strategy uses two pairs of unidirectional decoupling compensation controllers to realize the mutual integration and decoupling in both longitudinal and lateral directions. Compared with centralized control, it simplifies the design of controller, retains the advantages of centralized control, and improves the real-time performance of control. Compared with the decentralized control, it considers the influence of longitudinal and lateral control, retains the advantages of decentralized control, and improves the control accuracy. Finally, the proposed control strategy is simulated and analyzed in six working conditions, and compared with the existing control strategy. The results show that the proposed control strategy is obviously better than the existing control strategy in terms of control accuracy and real-time performance, and can effectively improve vehicle safety and stability.


2011 ◽  
Vol 08 (03) ◽  
pp. 181-195
Author(s):  
ZHAOXIAN XIE ◽  
HISASHI YAMAGUCHI ◽  
MASAHITO TSUKANO ◽  
AIGUO MING ◽  
MAKOTO SHIMOJO

As one of the home services by a mobile manipulator system, we are aiming at the realization of the stand-up motion support for elderly people. This work is charaterized by the use of real-time feedback control based on the information from high speed tactile sensors for detecting the contact force as well as its center of pressure between the assisted human and the robot arm. First, this paper introduces the design of the tactile sensor as well as initial experimental results to show the feasibility of the proposed system. Moreover, several fundamental tactile sensing-based motion controllers necessary for the stand-up motion support and their experimental verification are presented. Finally, an assist trajectory generation method for the stand-up motion support by integrating fuzzy logic with tactile sensing is proposed and demonstrated experimentally.


Robotica ◽  
1983 ◽  
Vol 1 (4) ◽  
pp. 217-222 ◽  
Author(s):  
Gen-Ichiro Kinoshita

SUMMARYThe tactile sensor is constructed as a part of the finger of a parallel jaw hand; it is of the size of a finger and allows for a large displacement of the sensor element in response to force. The structure of the tactile sensor incorporates 20 successively and closely aligned elements, which allow for a 2.5 mm maximum displacement for each element. In the described experiments we present the capabilities of the tactile sensor. The tactile sensor has the functions of: 1) discriminating the shape of the partial surface of an object; and 2) tracing by finger on the surface along the profile of an object.


Author(s):  
Wataru Fukui ◽  
Futoshi Kobayashi ◽  
Fumio Kojima ◽  
Hiroyuki Nakamoto ◽  
Tadashi Maeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document