Path Tracking Method for Traveling-Wave-Type Omnidirectional Mobile Robot (TORoIII)

2012 ◽  
Vol 24 (2) ◽  
pp. 340-346 ◽  
Author(s):  
Teruyoshi Ogawa ◽  
◽  
Taro Nakamura

An omnidirectional movement mechanism is needed that can move a robot in a narrow complicated passage. However, existing mechanisms cannot achieve stable operations. We noted that a snail uses traveling waves and can achieve a stable operation because of a large landing area. We therefore developed a traveling-wave-type mobile robot (TORoIII) using a snail’s locomotive mechanism. However, the directions of the robot were restricted by the number of units, i.e., the directions corresponded to the number of units. In addition, to use this robot as an autonomous robot, self-localization method and path planning method are required. At present, these methods for this robot have not been proposed. In this study, we propose a new perfectly omnidirectional locomotion strategy for TORoIII. In addition, we propose odometry based on kinematics and path planning method based on potential method. Furthermore, we propose online path tracking method using the odometry. We experimentally confirmed the utility of these proposed methods.

2017 ◽  
Vol 50 (1) ◽  
pp. 4929-4934 ◽  
Author(s):  
Gábor Csorvási ◽  
Ákos Nagy ◽  
István Vajk

2014 ◽  
Vol 1030-1032 ◽  
pp. 1588-1591 ◽  
Author(s):  
Zong Sheng Wu ◽  
Wei Ping Fu

The ability of a mobile robot to plan its path is the key task in the field of robotics, which is to find a shortest, collision free, optimal path in the various scenes. In this paper, different existing path planning methods are presented, and classified as: geometric construction method, artificial intelligent path planning method, grid method, and artificial potential field method. This paper briefly introduces the basic ideas of the four methods and compares them. Some challenging topics are presented based on the reviewed papers.


Sign in / Sign up

Export Citation Format

Share Document