Autonomous Pedestrian Push Button Activation by Outdoor Mobile Robot in Outdoor Environments

2013 ◽  
Vol 25 (3) ◽  
pp. 484-496
Author(s):  
Aneesh N. Chand ◽  
◽  
Shin’ichi Yuta ◽  

The authors have developed an outdoor mobile robot that has the ability to cross roads at an intersection or pedestrian crossing fully autonomously while traveling along sidewalks in an urban environment. This gives the robot the capability to travel longer and complex routes as the robot is able to cross a road and continue with its path. The developed robot has the unique ability to autonomously approach and activate the pedestrian push button with a mechanical finger. We first briefly describe the overall operation of such a road crossing robot. The rest of this paper then discusses in detail how the robot can meticulously navigate to and activate the pedestrian push button with the on-board finger. The contribution of this work is that although there are robots existing that perform precision docking or button activation, this robot is one of the few that can perform such an action in a real world outdoor environment that is completely unmodified. We prove this by deploying the robot in a real world road-crossing and it was successfully able to engage the pedestrian push button.

2010 ◽  
Vol 22 (6) ◽  
pp. 708-717 ◽  
Author(s):  
Aneesh Chand ◽  
◽  
Shin‘ichi Yuta

Notably, a salient shortfall of most outdoor mobile robots is their lack of ability to autonomously cross roads while traveling along pedestrian sidewalks in an urban outdoor environment. If it has the ability to intuitively cross a road, the robot could then travel longer distances and more complex routes than originally possible. To this effect, the authors have been developing technologies that attempt to endow such a road-crossing function to outdoor mobile robots. In this paper, a system for road-crossing landmarks detection and localization for outdoor mobile robots is presented. We show how a robot equipped with a single monocular camera and laser range finder sensor can accurately detect, identify and localize roadcrossing landmarks such as pedestrian push button boxes, zebra crossings and pedestrian lights that the robots needs to be aware of and use in order to autonomously cross roads. In addition, experimental results and future plans are discussed.


2018 ◽  
Vol 878 ◽  
pp. 202-209 ◽  
Author(s):  
Feng Qian ◽  
Li Yang

The natural ventilation of residential areas has placed more and more emphasis on residential area planning, according to the relationship between natural ventilation environments and the layout of architecture, we can reduce the energy consumption and the adverse effect of wind outdoors, improve the living environment and quality of life, making harmony between human and the nature. In this paper, we use Air-Pak to simulate the wind environment of residential areas. Through analyzing and simulating the air field which forms when the wind blows around the residential buildings by Air-Pak, we explain the advantage of the combination of computer simulation software and residential area planning. And we give some advice to the layout of the outdoor environment early in the residential planning area by the simulation of outdoor environments of buildings.


Author(s):  
Aatish Chandak ◽  
Arjun Aravind ◽  
Nithin Kamath

The methods for autonomous navigation of a robot in a real world environment is an area of interest for current researchers. Although there have been a variety of models developed, there are problems with regards to the integration of sensors for navigation in an outdoor environment like moving obstacles, sensor and component accuracy. This paper details an attempt to develop an autonomous robot prototype using only ultrasonic sensors for sensing the environment and GPS/ GSM and a digital compass for position and localization. An algorithm for the navigation based on reactive behaviour is presented. Once the robot has navigated to its final location based on remote access by the owner, it surveys the geographical region and uploads the real time images to the owner using an API that is developed for the Raspberry PI’s kernel.


Author(s):  
Renato Vidoni ◽  
Raimondo Gallo ◽  
Gianluca Ristorto ◽  
Giovanni Carabin ◽  
Fabrizio Mazzetto ◽  
...  

At today, available mechatronics technology allows exploiting smart and precise sensors as well as embedded and effective mechatronic systems for developing (semi-)autonomous robotic platforms able to both navigate in different outdoor environments and implementing Precision Farming techniques. In this work, the experimental outdoor assessment of the performance of a mobile robotic lab, the ByeLab — Bionic eYe Laboratory — is presented and discussed. The ByeLab, developed at the Faculty of Science and Technology of the Free University of Bolzano (I), has been conceived with the aim of creating a (semi-)autonomous robotic system able to sense and monitor the health status of orchards and vineyards. For assessing and measuring the shape and the volume of the canopy, LIDAR technology coupled with ad-hoc developed algorithms have been exploited. To validate the ByeLab different experimental tests have been carried out. In addition to the in-lab and structured environments experimental tests that allowed to tune the algorithms, in this work the assessment of its capabilities — in particular the sensoric system — has been made outdoor controlled environment tests.


Robotica ◽  
2019 ◽  
Vol 37 (08) ◽  
pp. 1320-1331 ◽  
Author(s):  
Jongwoo An ◽  
Jangmyung Lee

SummaryRobust positioning and navigation of a mobile robot in an urban environment is implemented by fusing the Global Positioning System (GPS) and Inertial Navigation System (INS) data with the aid of a motion estimator. To select and isolate malicious satellite signals and guarantee the minimum number of GPS signals for the localization, an enhanced fault detection and isolation (FDI) algorithm with a short-term memory has been developed in this research. When there are sufficient satellite signals for positioning, the horizontal dilution of precision (HDOP) has been applied for selecting the best four satellite signals to localize the mobile robot. Then, the GPS data are fused with INS data by a Kalman filter (KF) for a straight path and a curved motion estimator (CME) for a curved path. That is, the INS data are properly fused to the GPS data through the KF or CME process. To verify the effectiveness of the proposed algorithm, experiments using a mobile robot have been carried out on a university campus.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
L. Fernández ◽  
L. Payá ◽  
O. Reinoso ◽  
L. M. Jiménez ◽  
M. Ballesta

A comparative analysis between several methods to describe outdoor panoramic images is presented. The main objective consists in studying the performance of these methods in the localization process of a mobile robot (vehicle) in an outdoor environment, when a visual map that contains images acquired from different positions of the environment is available. With this aim, we make use of the database provided by Google Street View, which contains spherical panoramic images captured in urban environments and their GPS position. The main benefit of using these images resides in the fact that it permits testing any novel localization algorithm in countless outdoor environments anywhere in the world and under realistic capture conditions. The main contribution of this work consists in performing a comparative evaluation of different methods to describe images to solve the localization problem in an outdoor dense map using only visual information. We have tested our algorithms using several sets of panoramic images captured in different outdoor environments. The results obtained in the work can be useful to select an appropriate description method for visual navigation tasks in outdoor environments using the Google Street View database and taking into consideration both the accuracy in localization and the computational efficiency of the algorithm.


2020 ◽  
Vol 9 (3) ◽  
pp. e000933
Author(s):  
Sofia Kjellström ◽  
Ann-Christine Andersson ◽  
Tobias Samuelsson

BackgroundImprovement work can be used in preschools to enrich outdoor environment for children’s better health. Effective improvement work can facilitate the necessary changes, but little is known about professionals’ experiences of participation in improvement interventions. The aim was to evaluate how preschool staff experience quality improvement work, using the Breakthrough Series Collaborative improvement programme, to enhance outdoor environments.MethodsAn improvement intervention using a breakthrough collaborative was performed at 9 preschools in Sweden and examined with a longitudinal mixed method design. Staff completed questionnaires on 4 occasions (n=45 participants) and interviews took place after the intervention (n=16 participants).ResultsThe intervention was successful in the sense that the staff were content with the learning seminars, and they had triggered physical changes in the outdoor environment. They integrated the quality improvement work with their ordinary work and increasingly involved the children. The staff tested improvement tools but did not find them entirely appropriate for their work, because they preferred existing methods for reflection.ConclusionsThe challenges in quality improvement work seem to be similar across contexts. Using the Breakthrough Series Collaborative in a public health intervention is promising but needs to be integrated with preunderstandings, current reflections and quality tools and models.


2016 ◽  
Vol 2 (2) ◽  
pp. e1501061 ◽  
Author(s):  
Jean F. Ruiz-Calderon ◽  
Humberto Cavallin ◽  
Se Jin Song ◽  
Atila Novoselac ◽  
Luis R. Pericchi ◽  
...  

Westernization has propelled changes in urbanization and architecture, altering our exposure to the outdoor environment from that experienced during most of human evolution. These changes might affect the developmental exposure of infants to bacteria, immune development, and human microbiome diversity. Contemporary urban humans spend most of their time indoors, and little is known about the microbes associated with different designs of the built environment and their interaction with the human immune system. This study addresses the associations between architectural design and the microbial biogeography of households across a gradient of urbanization in South America. Urbanization was associated with households’ increased isolation from outdoor environments, with additional indoor space isolation by walls. Microbes from house walls and floors segregate by location, and urban indoor walls contain human bacterial markers of space use. Urbanized spaces uniquely increase the content of human-associated microbes—which could increase transmission of potential pathogens—and decrease exposure to the environmental microbes with which humans have coevolved.


Sign in / Sign up

Export Citation Format

Share Document